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§ 1. Introduction'

Let a be a cardinal number . A graph V is said to have chromatic number a
if x is the least cardinal such that, the set of vertices of ~ is the union of a sets, where
no two elements of the same set are connected by an edge in ~§ .

A graph 16~ is said to have colouring-number a, if a is the least cardinal such that
the set of vertices of S has a well-ordering -< satisfying the condition that for every
vertex x of W the number of those vertices y <x of .§ which are adjacent to x is less
than a .

We consider a graph ~rt as an ordered couple (g, G where g is a set the elements
of which are called the vertices of W, and G is a subset of the set of all unordered
pairs of g. The elements of G are called the edges of S .

As a generalization of graphs we will consider set-systems if =(h, H) where
h is a set and H is a set of subsets ofh . It is easy to generalize the concepts of chroma-
tic and colouring numbers for general set systems instead of graphs . We mention
that several properties of set-systems have been investigated in the literature which
can be expressed using the notion of chromatic-number . We do not try to give
complete references but we point out one important property which can be expressed
using it .

In [11] MILLER defined property B of a set of sets . A set H of sets is said to have
property B if there exists a set B which meets each element of H but does not contain
any of them . In [5] we have investigated property B in greater detail . It is obvious
that a non-empty set of sets H has property B iff the corresponding set-system

_ ( U H, H) has chromatic number 2 .
Our main aim in this paper is to study the colouring- and chromatic-numbers

of (infinite) graphs . The introduction of set-systems has several purposes . First
we are going to generalize some easy theorems proved in this paper for general
set-systems . Meantime we will state and prove some theorems for set-systems which
will serve as lemmas to prove the results for graphs . Finally we will give some gene-
ralizations of known theorems concerning finite graphs, for more general finite
set-sytems .

§ 1. A. A brief summary of the results and the history of the problems

In § 2 we explain the notations and introduce several concepts involving graphs
and set-systems .

In § 3 we give the proof of two theorems (the first of which is well known) .

1 For a detailed explanation of notations and terminology used in this paper see § 2 .
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3. 1 states that the colouring number is not smaller than the chromatic number
provided H consists of finite sets of at least two elements . 3 . 2 states under the same
conditions for H that if fP has colouring number a, then there exists a well-ordering

of h satisfying the condition appearing in the definition of colouring number
such that typ h= Ih' .

The problem considered in sections 4 and 5 has a long history . TUTTE and
independently ZYKOV were the first who proved that for every integer n there
exists a graph which does not contain a triangle and has chromatic number -n
(see [14], [19]) . This theorem was independently proved by some other authors .
See e . g . [12] . P . ERDős and R . RADA generalized the TUTTE-ZYKOV theorem for
every infinite cardinal a (see

The question arises whether the ERDős-RADO theorem has a similar genera-
lization . That is, does there exist for every infinite cardinal a, and for every integer
s a graph such that ~~ has chromatic number ~-a and does not contain circuits
of length -s . ERDŐS' theorem in [4] trivially implies that the answer is positive
if 7=(O.

A surprising result of this paper is that for a >(o the answer is no . Corrollary
5. 6 implies that if W does not contain a quadrilateral (or more generally an [[i, w,]]
complete even graph for every integer i), then

	

has colouring number at most w .
In § 5 we prove a sequence of theorems of the type that a graph of colouring

number >a necessarily contains certain types of subgraphs, mostly large complete
even graphs . We construct some counter examples to show that the results are
the best possible . The results are summarized at the end of § 5 . We obtain the
positive results by generalizing a construction of [11] . This is given in § 4 .

On the other hand to complete the results concerning the possible generaliza-
tions of the TUTTE-ZYKOV, ERDős-RADO theorem in an earlier paper [6] we
proved that for every x and s there exists a graph § which has chromatic number
`1! a and does not contain circuits of odd length --s . We did not know whether this
result could be improved so that § has only x vertices for a-- o) . We give this
improvement in § 7 (Theorem 7 .41) .

In § 6 we prove some simple lemmas, and state generalizations of theorems
of N . G . DE BRUIJN and P . ERDős and G . FODOR concerning set-mappings .

In § 7 we consider similar problems as in §5, and we prove some special
results concerning graphs with chromatic- (or colouring-) number >w . 7 . 1 states
that every graph of colouring number >o) contains an infinite path . We also prove
an entirely finite graph theorem 7 . 6 which states that every graph which does not
contain circuits of odd length ~2j+ 1, has chromatic number at most 2j .

In § 13 we come back to the problem of generalizations of the TUTTE-ZYKOV
theorem or more precisely of ERDős' theorem in [4] . In Theorem 13. 3 we give a
direct generalization of ERDŐS' theorem for finite set-systems which consist of
k-element sets, after having defined in 13. 2 what we mean by the expression that
such a system does not contain "short circuits" . Here we use the so-called proba-
bilistic method .
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In § 8-11 we consider a problem of an entirely different type . A theorem of
N . G. DE BRUIJN and P . ERDŐS [2] states that if k is an integer and every finite sub-
graph of a graph S has chromatic number at most k, then has chromatic number
at most k . (This theorem turns out to be an easy consequence of general "compactness
arguments" like Tychonoff's theorem or Gödel's compactness theorem .)

R. RADO pointed out to us a possible analogue of this theorem, namely, that
if every finite subgraph of a graph has colouring number at most k then W has
colouring number at most k . It is obvious that if this result is true it cannot be
expected to be a consequence of the compactness arguments . It turns out that for
k>2 the result is false, but a weaker form of it is true .

We prove the following Theorem 9 . 1 .
If every finite subgraph of a graph S has colouring number ~k then S has

colouring number -2k-2.
Theorem 9 . 2 shows that this result is the best possible .
More generally we consider the problem involving four cardinals under what

conditions for the cardinals a, /i, y, S is the following statement true .
Every graph I of a vertices, every subgraph of fewer than y vertices of which

has colouring number --/3, has colouring number --ó . In § 8 we expose the general
problem and give some preliminaires .

In §9 we discuss the case y= (o,

	

o) .
In § 10 we try to generalize the negative result 9 . 2 for y --w . Here we have

only partial results ; we will point out Problem 10 . 3 which clearly shows the range
of unsolved problems .

We mention that the counterexamples given in §§ 9 and 10 are unfortunately
rather involved and possibly they can be replaced by much simpler ones .

In § 11 we consider the cases #-co . As an easy consequence of the results
of § 5 we obtain some positive theorems but we do not know in most cases whether
they are the best possible . We point out some simple unsolved problems which
seem to be difficult .

Finally in § 12 we turn back to the type of problem considered in § 5 and
prove a result of this kind for set-systems =(h, H) where H consists of subsets
of k elements of h, 2 < k < co .

§ 2 . Notations, definitions

We are going to employ the usual notations of set theory, but for the conve-
nience of the reader we are going to collect here all the notations and conventions
used in this paper which are not entirely self-explanatory .

§ 2 . A. General notations, conventions

The fetters x, y, z, . . . usually denote arbitrary elements or sets, the letters
A, B, C, . . . denote sets. C_ , c, o, u, r), U, n denote the inclusion, the membership
relation, the empty set, and the operations of forming the union or intersection of
two sets and of arbitrarily many sets, respectively . Note that if A is a set of sets U A
denotes the set UxCA X. A-B denotes the set-theoretical difference of A and B.
Y (A) denotes the set of all subsets of A .
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{x) is the set whose only element is x, {x, y) is the unordered pair whose ele-
ments are x and y. (x, y) is the ordered pair with first term x and second term y .

If O(x) is an arbitrary property of the elements of the set A, {xCA : O(x))
denotes the subset of all elements of A which possess property (P. In some cases
the set A will be omitted from the notation .

If f is a function, we will denote by 9(f) and ,R(f) the domain and the range
off respectively. If xE-9(f) the value off at x is denoted by f(x) or by fx . f is con-
sidered to be the set {(x, f(x)) : x E (I (f)) . We denote by BA the set of all functions
with ~ (J')-B, :R (J') g A . If WA and C c A we denote by ,I`(C) the set
{yEB :f(y)EA) . If f is a function with 2(f)=A, Bc=A, then f'^B denotes the
function f restricted to B .

We assume that ordinals have been introduced in such a way that every ordinal
coincides with the set of all smaller ordinals . The letters ~, C, q, o, µ, v denote ordinals .
w is the least infinite ordinal . We call the finite ordinals integers, the letters
i,,i, k, /, tit, n, r, s, u, v denote integers . <~, S > and S E~ are equivalent. We will
denote by +, 1' the addition of ordinal numbers . The difference r - of ordinal
numbers is defined to that ~-S = 0 if s<~ and S=,' = h if 5 =-S and S+q = ~_- .

If for a function f, _9(f')=~, J 'will be sometimes called a S-termed sequence .
and its values will be written in the form fs , . Note that if a ~-termed sequence
is defined by its elements .f, f does not necessarily denote the corresponding
function .

If A is a set and a is a one-to-one S-termed sequence of range A we will briefly
say that a is a hell-ordering of type ~ of A .

By a cardinal we mean an initial ordinal . x, /3, y, á, e, x, r denote (not necessarily
infinite) cardinals. Every finite ordinal is a cardinal called integer .

By +, E, •, 11 we denote the usual addition and multiplication of cardinals .
respectively . Note that x + /1 is not necessarily equal to a but a + fl = x v J3
if x or /1 is infinite .

We mention that we use the usual notations for the number-theoretical opera-
tions on integers, and that the sign • of the multiplication will be sometimes omitted .
In section 13 of this paper where we deal with entirely finite problems, i, j, . . . run
over the set of all integers (positive or negative) . There naturally we do not assume
that every integer is the set of smaller integers . YJA), and YJA] are the sets of
all subsets of A of power --a or of power x, respectively, i . e ., YJA)
_ {xEY(A) : ;x'~ <a), YJA] _ {xEY(A) : x ; = a) . We define the cardinal power
aft by ar = t`al, . a ` denotes the least cardinal greater than x .

If there exists a f3 such that f3+ =a then a - denotes this (3, if such a fl does not
exist a- =a.

The letter 0 sometimes with subscripts will denote order types .
If A is a set and R a binary relation defined on A which is a simple ordering

of A of type 0 we write typ A(R)=0 . Simple ordering relations usually will be
denoted by -< (sometimes with subscripts). typ (<) will be identified by

For every xEA, Aj -< .v = (yEA :y-<x) .
When A is a simply ordered set by -< the subset BMA is said to be confinal

with A if for every v E A there is a y E B such that x y. If B, C( A and .v-<Y for
every x E B, y E C we write B -< C .

il1`1hIme/Inr _i,111 i1` ` 5<'rerürmvFm 111— ii111 J ; .
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O, is said to be confinal with O z if there is a set A simply ordered by -< and a
BE A confinal with it such that

typ A(-<) = O,,

	

typ B(-<) = Gz

By this definition the ordinal ~ is confinal with iff there is a sequence E S
such that cp,~ rp„ for rl < o ~ and ~ = ',,,,< 5(q, tj -L

For every s the confinality index cf'~) is the least ordinal ~ such that ~ is con-
final with ~ . For every ~, cf (~) is a cardinal -~ and cf (of (~)~=cf is a limit
ordinal if there is no q such that ~ -_ q + 1 . Thus s is a non-limit ordinal iff cf ((') =1 .

An infinite cardinal a is said to be a limit cardinal if a - = a, a strong limit
cardinal if /i a implies 2 0 ~ 7, a singular cardinal if cf (x) a regular cardinal
if cf (x) _ 7.

A regular limit cardinal is said to be inaccessible, a regular strong limit cardinal
is said to be strongly inaccessible .

We denote the strictly increasing sequence of infinite cardinals by co o , co, , . . .
. . ., WD ' . . . ; co o =(1) .

By the continuum hypothesis we mean the hypothesis that 2`° _O)+, by the
generalized continuum hypothesis we mean the hypothesis that 2"=y+ for every
a?o,) . They will be denoted by C . H . and G . C . H., respectively .

Iff is a sequence of sets with L(f)=D vve denote the Cartesian product of
the sets f, for xED by Pxe1f,_ i .e .

PrED f, - { g :9(g)-D and g ., `f; for every xED} .

It is convenient to use a different concept of product if the set R(f) is disjointed .
We denote by PT Df, the set

{yE Y(U (4(f)) :I,ynf,~= 1 for every xED} .

If especially D=k we use the alternative notation

PxED,f, = [f0+ . . . . !k-1] -

§ 2 . B, Special notations, graphs, set-systems

By a graph S~ we mean an ordered pair 'g, G) where g is an arbitrary set and
GU S,[g] . The elements of g are the vertices of ~, the elements of G are the edges
of S. As a generalization of graphs we are going to consider set-systems . By a set
system

	

we mean an ordered pair (h, H, where h is an arbitrary set and U HC h .
It is obvious that every graph is a set-system . The well-known concepts of

colouring and chromatic numbers of a graph as well as many other concepts of
graph theory can be generalized for arbitrary set-systems, and many results con-
cerning graphs can be generalized under natural conditions for arbitrary set-systems .
Some of the results concerning sets of sets considered in the literature can be easily
formulated and generalized using this terminology . In what follows in this section
whenever a notation is defined for an arbitrary set-system YK=(h, H) we will use
the corresponding notation for graphs by interchanging the letters 1', h, H by tile
letters 1,V, g, G, respectively .

65
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If there is no danger of misunderstanding we will not always distinguish the
set of sets H and the set-system Yr_ (U H, H) .

DEFINITION 2. 1 . We denote by g(e) the cardinal hj .

DEFINITION 2 . 2 . We say that the set-system _*~ , contains the set-system , or
xt0 z is a sub-set-system of,#', ifh, C h, , and H2 C H, . We briefly write then .0,2e of , .

DEFINITION 2 . 3. Let -e be a set-system, and h' (--- h. By the set-system spanned
by h' in ,)E we mean the set-system YP (h') _ (h', H n 9 (h')) . 1 f S is a graph, g' C g.
then (g') is a graph .

DEFINITION 2 . 4 . If H is a set of sets, we denote by x(H) the least cardinal
i for which A', _ x for every A EH. is said to be uniform if ',Aj = IBj for every
A, B E H. A set-system YP is a graph iff ' is uniform and i (H) = 2 .

DEFINITION 2 . 5 . Let H be a set of sets . H is said to hava, property C(y, (S ) if
1H'', <(J for every H'c-H, j11'I =~ .

Let f be a sequence of sets . f is said to have property C(y, ó) if nXE~fx <-v
for every D ' (---9, (f), jD'~ ~ y .

If for some 6, I A'i --8 for every A E H and 11 has property C (2, (i), H is said
to be almost disjointed.

DEFINITION 2 . 6 . Let

DEFINITION 2.. 7 . Let s be a set-system, x E h, and Iz'c h we denote by U(x, It', k
the set f .4 ,,fH : x F A and A -- fxj 'I -- h') and let

i'(x, h', H) = U V(x, h', A(')-

T(x, íz', YK) _- 1 v(x, Iz', k) j,

r(x, h',,)1K) is the valency of x in _k' with respect to h' . If h'=1z we briefly write
,c (x, h', ./ín)=i(x, . F) and r(r, .YP) is the valency of x in _ff .

DEFINITION 2 . 3. Let .X" be a set-system such Chat !A ; --2 for every A E i f .
i s said to have chromatic number ,> if (; is the small--est cardinal such that h is the

sum of /i free sets . The chromaticc nu 4lber of j will be denoted by Chr ( ') .

Chr('l°)--1 iff H=© .

In [5] we investigated the property B of a set of sets H. H is said to possess
property B if there exists a set B such that An B 71 0, AC B for every A E H. It is
obvious that Chr (H)=2 iff H -/ 0 and H possesses property 11 .

DEFINITION 2 . 9 . Let /~ be a sel : system, and f a well-ordering of type 5 of
the set h . Let h 5 =tfn :rl<s} for every 5 f is said to be a (3-colowi:r; of J4 iri
z(f,hs, .fF')-- / for every

	

---_t .
Alternatively, if -< is a well-ordering of h, -< is a /3-colouring i f

r (x . h < .,:, Yt' ) < f for every x E h .
J~ is said to Have colouring number (i if /3 is the smallest cardinal number for

which At liar a f3-colouring . The colouring number of _Y( is denoted by Col ( ) .

aatL-rnu~tia¢ Academr«e SC11>W111 rir Iltuip~t~ :cne 77, i966
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dr has colouring number /3 in type ~ if Col (4')=/3 and there is a /3-colouring off
of type ~ .

DEFINITION 2 . 10 . IfA is a set and f is a function f E A9(A) and .): a f(x) for every
x E A then f is said to be a set-mapping defined on A . A subset B c A is said to be a
free set of f if x qf(y) and y qf(x) for every x, y E B. f is said to be of order d if 6 is
the smallest cardinal for which f(x)J S for every x E A .

DEFINITION 2 . 11. The graph §=(g, S2 [g1) is called the complete a-graph if
a( ) = a. It will be denoted by [[a11 .

DEFINITION 2 . 12 . The graph I is called a complete a, fl-even graph (or briefly
an a, fl-graph if there exist go , g, such that Igo~=a,'g,1=/l, go r) g,= 0 , gouge _9
and G =[go ,

	

It will be briefly denoted by [[a, /311) .

DEFINITION 2 . 13 . (i) The graph ~r=(g, G) is said to be a path of length i if
there are distinct elements y o , . . ., x i _ I such that

g= t o, • • , Ai-I), G=ffx,,x,J,

	

+fxi-2, -Yi-M*

(ü) If i-3, tPf=(g, G) is said to be a circuit of length i if there are distinct
elements x o , . . ., x i -, such that

- i vo, . . ., •z i - I }

	

G= ({xo, = I },

	

~
. . , fxi_ 2, x -I ), {-x i - I , •a o )) .,

	

.

	

i

~J'0(xo, . . .' ei-I), W (xo, . . ., xi- i ) will denote paths and circuits of length i, respect-
ively .

DEFINITION 2 . 14 . The graph ~r/=(g, G) is said to be an infinite path if there
is a even-ordering f of type co of the set g such that

~e = ffJl Jill I . i- la)) .

Infinite paths will be briefly denoted by P(f) or by ~~ .

3. Two theorems for chromatic and eoiourimT numbers

It is well i w3wn than Chr(~) ColVJ) for every graph 'i . As 'an easy gene
ralization of this we prove

THEORFtvt 3. 1 . Let

	

be a set-system such that H~_-_9%,(h) arse ;A'I - 2 for every
AEff. Then Clir (YK) --Col(/O .

FROov . Pttt Col(X)=~ . Let f be a (l-coked ring ov type ov NYC . We devu~e
a fUnetion q ` /i by induction on L

	

as follows . Assume r,,, is defined for it-í__
c. By the assumption and by (2. 7) and (2 . 9) the set

A =

	

o=(r,, for some Ii =S for which

liras power

	

/3. Let cf s be the smallest ordinal which belongs to j3 --A .
For every L)-<f let A„

	

The sets A„ are obviously disjoint
and their union is h . Assume X E If. Then X is unite, by the assumption . Let f, be

5 "
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its greatest element in the well-ordering . Considering that X has at least two ele-
ments, there is an q-<~ such that .f EX. Then f Eu(fs , h r ,)F) hence q-,á _zq-, and
X A„ for every o . The sets A,, are free . This proves 3 . 1 .

The condition Hc_ Yjh) of 3. 1 is necessary as is shown by the set-system
e=(w, Y (o (Col( )=l, Chr( )= w). This example clearly shows that the
concept of colouring number can be useful only for set-systems which consist of
finite sets .

THEOREM 3. 2 . Let _Y1' be a set-system, a ( . F ) = a, Col (/f') = f. Assume H r,,, (h) .
Then .YF has a fl-colouring of tvpe a .

3. 2 is trivial if a f . Hence it is a corollary of the following

THEOREM 3 . 3 . Let YF be a set-system, )c (,e) =a, Col (~f) = f. Assume
H c S„(h), /i < a. Let f be an arbitrary f-colotlrilrg of type of /{ . Then there exists
a 11-colouring f' of type a of

	

satisfying the following condition :
If

	

then u(f., h,,, ~~)=u( .Ín> h ,-Y(- ) ) for every ("<S, n<a.

(Here, according to the definition 2 . 7, h-= {f, : o <S }, h ; _ { f~

	

_ ill fore very
c and q-:7, respectively .)

PROOF . 3 . 3 is trivial for a <o) . We assume a w .
For every < C and for every i we define v i(~) and uO by induction on i as

follows :

( 1 )

	

PO(S) =ti ffs , h~+'~e) U {.f_}~ t'i+l(~) -

	

I'(Jq~ h~ .,

	

) UL i(~)
[, i(,)

r (7) = U Ei(l) .
iuo

[t is easy to verify that

(2)

	

uG ) =

	

U

	

v(o)u {f) for every
J,C°(i_,h_,

	

)

Let y be a one-to-one a-termed sequence, with .1( q )=c .
(3)

	

A,, = u(q-,)

	

U u(q,J .

Then
h=UA,, .

,,<I

We define a well-ordering -< of h as follows .
Assume

(4) f "f"- - E h, f- E A,, . f~- - A,; .

f <fs •, ifi' either n<,l or o=q and <C.
We are going to prove

(5)

	

typ h(~ ) =a •

Considering f < a and that by (3) and (4)

typ lt (-<) _ Y' typ .f - '(At,) (-< )
q<z

Act, Matim,, atica Acadrmiae Scicntimum II,mga-
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to prove (5) it is sufficient to see that

(6)

		

IA„! < #+ u co for h < a .

Considering (3) this follows from

(7)

	

;v(i:)', -:fl , U co for every S < S .

Considering that v(f, h ,, ')', <# by the assumption (7) follows by trans-
finite induction on S from (2) .

Hence (5), (6) and (7) are true .
By (5) there exists a one-to-one 7-termed sequence ./ ' whose range is h satisfy-

ing the condition < f, ; for o < h < x . Let h' = ff.': o < rl) for n < x .
Assume that A C H and f is the element of A with the greatest subscript . Let

o be the ordinal for which feA_ 'Then f Ev(rp f,) by (3) and A(_ o(q;,,) by (1). It
follows from (4) that then f, is the greatest element of A in the well-ordering < .

Assume now f, =f;, for some i <u,,'< . By the above remark using He S,,(h)
it follows from the definition 2 .7 that V(f,,,h ;,,

	

)=V(f,h,,_e) and conse-
quently v (f, , h 1, , JP) _ .• (f , h ;-, X, ) . Hence f satisfies the requirements of 3 . 3 .

Note that the condition #-<a can be replaced by the weaker one that /3 x
and g is regular if /i=z since the proof of (7) immediately gives that 'v(~)j<~UO-)
if P) is regular . In case z=/3, Y singular the theorem is false . We omit the simple
but not entirely trivial proof of this . Condition Hc .,-,',,(h) of 3 . 3 is necessary as
is shown by the following simple example due to E. C. MILNER .

Let h = (!), 4 -co, H = {X c_ h : X = h - co i u {y) for some y E w, ) . Then obviously
< is a 1-colouring of .#_ of the type w, +co, but every well-ordering of type w I of
h is a t3-colouring of

	

only if fl > co .

§ 4 . Lemmas. Generalization of Miller's inductive construction

First we restate a theorem which we will use later .

LEMMA 4. 1 (Theorem of TARSKI) . Let _e=(h, H) be a set-system with x(XO _
--w . Assume that !A'! _- 6 for every A E H. Then ; H j -- 7 if one of the following

conditions (i), (ii) and (iii) holds .
(i) The G. C. H. is true, J --(t), H has property C (y+, 8) and of (y) ; cf (6) .
(ü) The G. C. H. is true and H has property C(y+, S') for some
(iii) H has property C(Y , ó') for some (J'-: (t) .

These are really corollaries of Theorem 5 1, p . 211 and Corollary 6, p . 213
of TARSKI'S paper [13] . Note that the theorems in [13] are stated tinder the stronger
conditions that C(2, 6) and C(2, 8) hold, respectively, however the proofs give
the somewhat stronger results stated in 4 . 1 .

Now we need a generalization of a construction given by E. W. MILLER in
[11] . This will be similar to that we have used in [5], but for the convenience of the
reader we will give here all the details .

In what follows in this section =(g, G) will denote a fixed graph, with a(~)
= x-co and z will be a fixed cardinal number >0 . We remind that by the definition
2 . 7 for every _v -I g and -"7- g V(,-v, g', TI) is the set of edges of S emanating from

A,ta Alrztbanranca dcaden:rae Scir~rNarunx Phmgm'icne r, t96o



7 0 P . ERDŐS AND A . HAJNAL

x whose other endpoint is in g', v(x, g', W) is the set of vertices in g' connected to
x in S, and that ; V(x, g', ~~) = It : (x, g', = T (x, g', <26) is the valency of the vertex
s in

	

with respect to g' .

DEFINITION 4. 2. A subset g'C g is said to be T-closed in

	

if r(x, g', '4) _=T

implies that x E g , for every x Cg .
Considering that g itself is T-closed for every T and that the intersection of any

number of T-closed subsets is again -r-closed, for every g' c g there exists a minimal
T-closed subset containing g' . This will be called the T-closure of g' in 1 and it will
be denoted by Clos (g', S . T) .

Let m be a well-ordering of type 7 of g. We are going to define a sequence g
_ < of subsets of g by transfinite induction on ~ as follows .

DEFINITION 4 . 3 . Assume g, is defined for every < Z for some S < y . Put
h~ = U g, . If li_=g put gs =O. If g-h,,~O let x,= (f „ for the least p for which

:<5
(f,,Eg-h~ and put

gs = Cl os (h~ v fxd, 'S-, T)-hs .

The following facts are immediate consequences of the definitions .

LEMMA 4 . 4 . (i) g = U g, and the sequence g~, S < x is disjointed .

(n) gs = h5+ , tih~ for every <a .
(iii) h, ;-, is 7-closed for every 5 < x, and as a corollary, of this T (x . h s : i _ ) < r

for every ~ < a, x E g~ provided ~ < ~ .

LEMMA 4. 5 . Assume x Egs , S -<a. Then
(i) T(x, hy , G") `T if T ~co,
(ii) T (x, h,, 5) < T i_f T < co .

PROOF . T(x, h s , W)

	

U T(x, h,, I , ~) by 4. 3 and 4.4 . T(x, h y j , .'Y)<r for
S<~

every < 5 by 4 . 5 . The union of an increasing sequence of cardinals < r is - T if
T is infinite and is < T if T < cu .

LEMMA 4. 6. Assume g (--- g, I g' y, w v T+ y. Then

Clos (g', ~, T)'i ` Î

provided one of the following conditions (i), (ü), (iii) holds .
(i) The G. C. H. is true, 5 does not contain a [[y , T]] complete eres graph

and cf (y) --cf (r) .
(ü) The G. C. H. is true and does not contain a

	

O]] complete even graph
for a I) < r .

(ill) 2V does not contain a [[y + , O11 complete even graph for a 0 < U) . O < T .

PROOF . Let r = w v T+ . We define a sequence A

	

< s of subsets of g b~
transfinite induction on c as follows .
(1) Assume A,, is defined for every < c for some < a . Put B- =

	

U A

and AS = {xEg-Bs :T(x, f3~, ~)~r} •
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For every r <e let H, _ {v(x, Bs , SP) : x (A~1 .
As a corollary of Definitions 2 . 5 and 2. 12 we have

(2) If 0<8-T and H, does not possess property C(y+, 6) then ~6 contains a
complete even graph [[T+, 61 ]

We are going to prove by transfinite induction on S that
(3)

	

By; - T for every

	

e.
Assume (3) is true for every

	

5 for some

	

If S is a lirnit ordinal
B = v U B- by (1) hence j B,', _- e =

	

1 f

	

_ >T + i then B~ = B t, v A, I . I t
5

follows from (2) that H,I possesses property C(T+, T) if (i) holds and H,I possesses
property Q( , +, 6) if (ü) or (iii) hold . U 11,1c B,I and JB,I l ^ by the induction hypothe-
sis. It follows from Lemma 4 . 1 that I H, I ', -T if one of the conditions (i), (ü), (iii)
holds. Using again the conditions (i) . . .(üi) it follows that A,,'-y . Hence 'B,~
for every

We prove
(4) B, is T-closed .

If x E g B,, then v(x, B E , W) = U 17 (x, B_, ~~) and T(x, Bs , S) -1 for every
SGE

e. Considering that r < e and r is infinite and regular it follows that there is a
o _a such that T(x, BE , f) = T(x, B,,, Ff) -- T .

It follows that Clos (g', ~q , T) - BE and thus 4 . 6 follows from (3) .

LEMMA 4 . 7 . Assume w - /i, i < # and Col (~f(g,)) /3 for every r < Y . Then
Col (~fl - f .

For every ~ < a let -< be a f3-colouring of the graph 1(g) .
if x,y(g let x-<y ifandonly ifxEg 5,yEg,andeither~<~or~_~andx-< y .

By 4. 4 (i) -< is a well-ordering of g. For every y Egs v(y, g; -<y, ~§) = v(y, h,, W) v
v v(y, g~' -<~y, ~~(g~)) . It follows from 4 . 5 that fv(y, g ; -<,I , , fl ' <T+ v fl _ /i, and
so -< is a fl-colouring of g .

§ 5. Theorems and problems concerning graphs with Col( ) > # -- w

We are going to consider the following problems involving four cardinals
a, fl, T, 8 .

Let S=(g, G) be a graph, a( )=a with colouring number ># (or chromatic
number >(l, respectively) . Under what conditions for the cardinals a,

	

6 does
then %,' necessarily contain a complete even graph [[y, 8]] ?

The results of this section are relevant only if /i=-'w .
To have a brief notation we introduce the relations

Col (a, /3, y, (5), Chr (a, fl,

	

6) .

DEFINITION 5 . 1 . The relation Col (a, fl, T, 6) is said to hold if for every graph
Col (66)--f3 implies that V contains a complete even graph

The relation Chr (a,

	

is said to hold if for every graph

	

a(G)=a,
Chr (fin) >/3 implies that

	

contains a complete even graph

LEMMA 5 .2 . Col (a,

	

6) implies Chr (a, f . T, (J ) .

Acta di.+~brin~iti~n .1<--t<(eminr S,ien<i~u~~m lhn~,ori~d< <
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By 3 . l .
As, a corollary of the definition we have

LEMMA 5 . 3 . Both relations introduced in 5 . 1 are decreasing in variables a, y, 8
and are increasing in P .

DEFINITION 5 . 4 . For every infinite cardinal x we denote by a(x) the smallest
cardinal a >x for which cf (a)=cf (x) e . g . x(x)=cow if ;- =o),

	

if

THEOREM 5 . 5 . 2 Assume P o). Then Col (a, 13, fl 1 ,(5) is true provided one of the
rbilou ing conditions (i), (ü), (iii) holds .

(i) The G. C. H. is true, h+ = f3 and a-a(6) .
(ü) The G. C. H. is true and
'iii) 6 < (p,

PROOF . We prove the theorem by transfinite induction on a .
If then Col (q) f3 hence Col (a', d) holds for every a' =a and

for every ,,, (5 . Assume that s >iS and Col (a', 6) holds for every a'<a and
let W be a graph with a(4)-a .
(1) Let r=d if (i) holds, and let -r

	

if ( i) or (iii) hold .
We assume

(2) ~; does not contain a complete [[f3 (5]] and using (2) we prove Col ( 12")
We consider the sets g, defined in 4 . 3 . We prove

(3) g~ < a for every < a .
To prove (3) we prove by transfinite induction on ~ the following somewhat

stronger statement .
(4) jh

	

f3 u I C I for every < a .
Assume that (4) is true for every <5 for some S<u. h_= U g y hence (4)

is trivial if S is a limit ordinal_. Assume

	

_ + 1 . Then by 4. 3 and 4. 4
Cios(h,u fx s),S,i) = h, + , . Then ;h,.u 2 .á-y }

	

Put Q 5'i=Y . Then ~~muTT .
It follows from J . 6 (i), ji), (iii) and (2) that Ihj

By (3), a (~ (g,)) < a for every ( . By (2), (g ) does not contain a [[#+, b]] . It
follows from the induction hypothesis that Col ( (g;)) -- >3 for every < a . Con-
sidering that (I --cu and < < f, by (1), Lemma 4. 7 implies that Col (Tj) = f .

COROLLARY 5. 6 . If Col ( ) >v~ then «9 contains an [[i, co i ]] graph for every i .
We do not know whether in Theorem 5 . 5 condition (i) the assumption

	

u(ö)
is necessary . The simplest unsolved problem here is

PRom-E.\Z 5. 7 . Assume the G . C . H . Is it true that Col (co w t, "I , (0 2 , (0) or
Chr (e ,+, , <o , co z , co) holds, i,e., is it true that every graph with
which does not contain a [[co,, co]] has colouring number -w,?

THFORE:N[ 5 . 8. Assume the G . C. H. is true, and f --m . Then Chr (fJ+, ,~, f3, (~)

is not hare .

Instead of 5 .8 we are going to prove the following slightly stronger

It is to be remarked that we originally proved Theorem 5 . 5 for the relation Chr (a, f1,

	

á) .
R. RADO pained out to us that our proof really gives the stronger result for colouring numbers .

.lrt ;i ,1l«!l,- ru~rrtk~r A-dene ae Scientéam- H¢"2,a i; ae 17, 1966
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THEOREM 5 9. Assume the G . C. H. is true and f-w. Then there exists a graph
for ~chick a( 1?1)_ +, Chr (S)=f+,

	

does not contain either a [[f, f]] graph or
an [[w11-graph .

We do not know whether the condition [[w]]

	

can be replaced by the
stronger one [[31] q ~, i . e ., that 14 does not contain a triangle . The simplest unsolved
problem is

PROELrna 5. 10 . Assume the C. H. Does there exist a graph with
such that Chr (,)=o),, [[u),wfl

	

and [[3]l T?
An affirmative answer to 5.10 would be a consequence of the following assertion
Every graph with a(9)

	

a w, Chr (4)=a contains a subgraplI 'with
(p')=x, Chr (P )=x such that f[3]]

	

' .
We do not know whether this assertion a true or false for any infinite x even

if we replace [[3]] by [[k]] for some 3 < k - w .
We have some special results on problems of this type which we preserve for

later publication .
If we replace the chromatic number by colouring number we can prove the

corresponding result without using the G . C . H .

THEOREM 5. 11 . Assume fl--(o . Then there e.;ists a graph S with Y(K)=fl
Col ('P)= f+ which does not contain either a [[f, f]] graph or a circuit of odd length .

PROOF OF THEOREM 5 . 9 . We define the graph

	

=(g, G) as follows. Let
g = f

	

f - . Let f be a well-ordering of type f+ of g and let gyp, i E#+f+ such that

f =(cpy ,t~ for S<~
Let further g s - {C} X f+ . g = R g .

(1} Let H = {Ac--g : There is a set T(A)B f , jT(A)j =f such that Igs A = f
for every Z E T(A) and g y n A = 0 for /i+ T(A)} .

Considering HC Y0 ,(f+) it follows from G. C. H . that there exists a well-
ordering (P of type f of H.

We are going to define a sequence B . s < f + of subsets of g by transfinite induc-
tion on S satisfying the following conditions .
(2) (i) iB,I = f for , < f +

(ü) Br nB-',-zf for <S<f+
(iii)

	

r )B,

	

0 for < < _ f
(iv) Bx ng,j=-l for every <f+ for S ~f+ .
Assume B~ is defined in such a way that it satisfies (2) for every 5

	

for some
f . Then , s can be defined using the fact that if F is a set of power = f of (1) ,'s

and B is a set of power f of B,'s already defined and 0~ 0 F then by (1 1, and (2)
there are f vl's belonging to T(O, o ) such that g,U B is non-empty .

Now we define the set of edges of G as follows .

(3t i.Í >fi~EG iff

	

By , s <qn and

It follows immediately from (3) that [[w]] _ because if a complete graph is
contained in then either the first or the second terms of its vertices form a decreas-
ing well-ordered sequence of ordinals .

A,la '7d-"w- ~lcadenrac Sciert:a,<ani Ilur aricac r yGó
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Assume now C,, C, fig, C, (-)C2 = 0, [C,, C,]'- G, C, i =,C, ; =(i . Using
the same idea, it follows that there are sets D,, D,C-g such that ;D ; =,D 2 i=f,
[D,, D,] [C, . C_] C- G, and there is an >7 < f+ for which D, c g,,, D, C- U g .,_

if f~- fs ED, then D,r--B,,r)B, by (3), in contradiction to (2) (ü) . It follows that
[[(3, 13 11

Assume now that Chr ( ~),- f+ . Then S is the sum of fewer than f' free sets .
Considering that f* is regular then there exists a free subset C-g sucl ; that the set

T = {n<f + :11Cng, ; = f
+ }

has cardinal fl + . It follows from (1) that there exists an q E T such that (P . = T.
T(cP)' T q + 1) for some S < fl + . Then there exists > such that f E Cr-,g,,
and

	

forevery QEf- '(0) •
Then B_ n 0, ;-10, by (2) (iii) and BS n chr E- u(f~, 0, ) by (3) . This contradicts

the assumption that C is a fr,.e set, hence Ch r (S)=f
S satisfies the requirements of 5 . 9 .

PROOF OF THEOREM 5 . 1 1 . We define the graph S=( g, G) as follows .
By a well-known theorem (see, e.g ., [13]), there exists a set H of subsets of

power f of f such that lH = f + and H has property C(2, fl) . Put g = f v H. Define
G={{x, y} E Sz [g1 : x Eg and y E H and x 6y) .

It is obvious that a( )=f+, and that S contains neither [_[f, fl]] graphs nor
circuits of odd length . We prove that Col (S) = f + . Assume that IN has colouring
number --f . Then by 3 . 2 el has a fl-colouring f of type f+ . Then there is a ~ < f+
such that h_ _ { f„ :rf-~j contains f . Then ~u(fs , 1~ , ~)', =f in contradiction to
the assumption. Hence Col (V)=#+ .

Using the G . C. H. we can summarize the results of this section concerning
the relations Col (7, f, y, b) and Chr (7, f, y, b) as follows .

If 7 _ f both relations are trivially true . Hence we assume 7 > f - w . The trivial
example of the complete [[f +]]-graph shows that both relations are false if
May, (y, (5) > fl - . We assume f+ ~ y -J .

Under these assumptions we distinguish the cases A) (5 + f, B) J+ =fl,

In case A) both relations are true by 5 . 5 (i) .
In case B) both relations are true for 7 7(d) and it is not known whether

they are true or false for 7>7(~5) if b /-f* = 6-' + . That means that we do not
know the answer to Problem 5 . 7 even if we replace w z by o_), or co .

In case C) both relations are false by 5 . 9 .

§ 6. Set-mappings, and ordering numbers of graphs

DrFINJTION 6 . L Let g be a set and f a set-mapping on g (see Definition
2 . 10) . f is said to have chromatic number f if f is the least cardinal such that g is
the union of f free sets .

~!~=(g, G'; is said to be the graph induced by the set-mapping f defined on g if
(x, y)EG iff vEfy or yCf,

-1,1, Malhe,na/- A-d-,- Surn(emuna FLur„aricne - . 1966
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As an immediate consequence of the definitions we have that if S is the graph
induced by the set-mapping then both have the same chromatic number .

DEFINITION 6 . 2. A graph S is said to have ordering number P) if 13 is the least
cardinal such that there exists a simple ordering -< of the set g such that

z (x, g ; < x, ~§) < # for every x E g.

The ordering number of Wj will be denoted by Ord (4,) .
We have the following

THEOREM 6 . 3 . Assume f is a set-mapping of order --[3 defined on a set g, and .let
G=(g, G) be the graph induced by f: Then Col (G) -# if fl is infinite .

6. 3 is a slight generalization of a theorem of G. FODOR [8] . His theorem states
the same assertion for chromatic numbers instead of colouring numbers . 6. 3 implies
this theorem by 3 . 1, but it can be proved using the same ideas . We omit the proof.

THEOREM 6 . 4 . Col (~P)-Ord (fl f Ord (N) is infinite .

PROOF . Put Ord (w) = f3 . Let -< be an ordering of g such that z ( x, g I -< x, )
for every x Eg . Let f be the set-mapping on g defined by the stipulation

f(x) = r(x,g',-<a., ~§) .

Then by the definitions 2 . 7 and 6. 1 W is the graph induced by f and f is of order
/i . Hence 6. 4 follows from 6 . 3 .
A theorem of N . G . DE BRUIJN and P . ERDős [2] states that iffis a set-mapping

of order fl < co thenfhas chromatic number -2f -1 . (FODOR'S theorem mentioned
is a generalization of this for infinite /l's .) This theorem also has a generalization
corresponding to 6 . 3 .

We have

THEOREM 6. 5. If f is a set-mapping of order f3 < co defined on a set g, and
! _ ( g, G) is the graph induced by it then

Col (W)

	

2/3- 1 .

If is finite the proof given in [2] applies, but the proof of the general result
becomes more involved . Since we do not need this result in this paper we omit the
proof but we mention that it can be carried out quite similarly to the proof of 9 . 1 .

Similarly to 6. 4 this theorem has the corollary that if Ord (#) is finite then
Col (W) -- 2 Ord (~el)-1, but this corollary is not best possible because 9 . 1 will
imply that Col (W) -- 2 Ord ( ,.V) -2 .

THEOREM 6 . 6 . Let be a graph and /3 < co, If ererY furies subgraph of has ordering
number at most f3 then Chr (Ifl -- f ,

6. 6 is an easy consequence of TYe HONOFF's compactness theorem . We omit
the proof.
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§ 7 . Some special results and problems concerning graphs
with Col (S) > co and Chr (W) > w

THEOREM 7 . 1 . Every graph of colouring number >w contains an infinite path Y_

PROOF . It is obvious that if there is a g'c-g such that g' 0 and z(x,

	

ej
for every xC9', then g contains an infinite path .

We assume that
(1) Every non-empty g' --- g contains an x such that r(x, g', Ij- ) < w .

We define a sequence .x s of elements of g by transfinite induction by the stipu-
lation that x : i~ an element of the set g,

	

g- fx, :' _,, ; satisfying i(x
whenever g is non-empty . It is obvious that there is an rI such that g7 is empty and
thus

	

Let Y_ -<x iff

	

Then i(x,, g' -<x,, ,~e1) = T(.x_, gs , Tp)
hence Ord (Wj) co and Col (, ) = co as a corollary of 6 .4 .

In fact we proved here that if Col ( ) >co then there exists a non-empty subset
r,!,'L_g such that : (x .

	

co for every x <g' . 3 The same idea gives the following

THEOREM 7 . 2 . Assume fl-co and Coi ( )Then there exists a non-empty
subset g'-7 v .such that r (x,

	

4) --[1for every x F g', and as a corollary of this j g'', -l3 .

We emit the proof. but u'e mention that this result is the best possible, namely
we have

THEOREM 7 . 3 . For ecer_r =,o there exists a graph such that a (N) = f,
Chr NI,, ) = Jl, and ever p non-en .pty subset g' c g contains an element x such that
i (x, g', ) - P .

This is shown . e . g ., by the following graph . Let g- j3 . Let gs , < /3 be a sequence
of disjoint subsets of fl each with fl elements and such that U g , =g.

Let G = {{ n,~'} :}i<y<=~~ and rjEg, Egs , for
it is easy to see that

	

satisfies the requirements of 7 . 3 .
Now we are going to discuss a problem of different type . As a generalization

of some results of [4], [7] and [14] the authors proved in [6] that for every /3--(1)
and for every integer j there xist graphs ~rt of chromatic number such that
§ does not contain circuits of length 2i-,-1 for 1_=i-j . As a slight improvement
of this we can prove

THEOREM 7 . 4. Assume(3 co . There exists a graph 4 with x( )= Chr (S) -- ji which
does not contain circuits of length 2i 1- 1 for 1--i =j .

PROOF (in outline) . Let g= 2" -- lp . We define the usual lexicographical ordering
of g by the stipulation that if` a, b-g, a <b iff a,-b, for the least 1-2j'+1 for

which a, h, .

Put fa, b}EG iff a _b and a;--b,,<a7+ .t<,h, < . . . <a,, .iz`bziz-i •
This construction is a generalization of the construction given its [71 .
It is obvious that 7('Pj)= j3 . Using the same idea as in [71 it is easy to see that

Chr(N)=Jl. To prove that does not contain circuits of odd length =2j+1 is
a matter of easy calculation . We omit the details .

' The idea of this generalization of 7 .1 was suggested to us by J. SASADUSSI .
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Corollary 5. 6 implies that a graph of colouring number >w contains circuits
of length 2i for every i, and trivial examples show that there are graphs of arbitrarily
high colouring number which do not contain odd circuits at all . 7 . 4 shows that
there are graphs of chromatic number w, which do not contain "short" odd circuits .
We have

THEOREM 7 . 5 . Euery graph with Chr (~) -w contains circuits of length 2i + 1
fa • infinitely many i .

7 . 5 will be a corollary of 7 . 7 .
The following problem remains open .

PROBLEM 7 . 6 . Is it true that for every graph ' of Chr (fl >w there exists an
integer j such that W contains odd circuits of length 2i + 1 for every i j?

We mention that the answer is affirmative under the stronger assumption
Chr (f) >w z . Since this is obviously not a final result we omit the proof. A positive
answer to 7 . 6 would follow e . g . from the following assertion :

Every graph TJ with a(~)=Chr('4)=w, contains a subgraph ~.V' with a(~)=
=Chr (6~)=w, such that ' is w-fold connected . ;

We do not know whether this assertion is true or faire . Many similar questions
can be asked even if we replace w, by x and w-fold connected by fl-fold connected .
Interesting problems of new character arise even if we assume that x, f both are
finite but we have very little information on them .

A theorem of [2] already mentioned states that if f is finite and every finite
subgraph of a graph ', has chromatic number at most /i then has chromatic
number at most f. Using this theorem 7 . 5 is a corollary of the following

THEOREM 7 . 7 . Let be a graph, x(W) < w and asinine that T1 does not contain
circuits of length 2i + 1 for i -,j for some j < w . Then Chr ( ) 2j.

7 . 7 is best possible as is shown by the example of the complete [[2j]] graph .
PROOF (in outline) . By a theorem of T . GALLAL [9] 5 we can assume that the

following assertion holds
`1) if x/-yEa,, there exist Y(x,,

	

x r ) .

	

xs) such that x, =x, =x,
v, =x', =y 1 is even, s is odd .

We proceed by induction on x(f) . Assume now that Chr( )>2j. By the
induction hypothesis this implies that
(2) i (x, "q) - 2 j for every x Eg .

Using (2) we first prove that
(3) There exists a circuit 1'

	

of length -4j.(,
Namely, let .d(x,, . . ., x r) be a path of maximal length contained in . Then

u(xi, TO C {x z , . . ., x,.} . Let N - {i:2_i_r and x r 'cu(x,,

	

Using the assump-
tion that

	

does not contain odd circuits of length >2,i we have
(4) Either i - i' is even or ;i - i'I < 2j, for i'- i ` N. Let i o be the greatest element
of N.

' A graph g- ,g, G is said to be f-fold connected if for every g -

	

g < f, Wj V) is
connected .

See [9l, 6 . 3, p . 16 .
By a theorem of G. DIRAC [31 (2) implies (3) . But we give a direct proof of (3) .
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Considering that 2 E N it follows from (4) that
(5) 2i + 1 qN for i _-J and io -- (2i -1) q N for i j.

If i o < 4j then i t, - (2j - 1) < 2j + 1 and then by (5) N contains at most
2
< 21

elements, in contradiction to (2) . Hence io -4j and (3) is true .
Now let W,(x, , . . ., x,,)

	

be a circuit of length _-4j . We may assume io is
even. It follows easily from (1) that there exists a path 9 (y, , . . ., y,) (-- W and
1 -i i < i2 -i0 such that

y' I =xi,, Yl-x,- {x,	xia) n {Y2, . . .,Y1-1 - O

and i t -i2 and l - 1 are of different parity . But then either 6(x i ,, x i
Yl- i , . . ., Y2) or

	

(y, , . . ., y,, x i , + , , . . . . xio , xr, . . ., xi t _ r ) is a circuit of ~N of odd
length >2j.

Finally in this section we are going to mention a problem concerning
graphs with Chr ( ) -w. 7 . 5 implies that S contains odd circuits of length i for
infinitely many i, and easy examples show that there are graphs with Chr (S)=C0
such that they do not contain circuits of length 2i and 2j+ 1 for infinitely many i
and j . One can generally ask that what can be said of the set of those integers for
which

	

contains a circuit . We can not solve the following simple problem :

PxoBLEtiz 7 . 8 . Let

	

be a graph, Chr (tp)=c ) . Let N= {i : there is a circuit
of length i such that 1~c=5~ ~. is it true that then

1, S

§ 8. The problem of 1Rado

DEFINITION 8 . 1 . The graph

	

is said to possess property D(ji, y) if every sub-
graph of T1 induced by a subset 'fig of power -y has colouring number -f .

DErINrTION 8 . 2. The relation R(~, /3, y, (5) is said to hold if every graph
of ~(f)=a which possesses property D(8, y) has colouring number -J .

The problem suggested by R . RADO mentioned in the introduction was whether

R(a., fl, co, (i) holds for every a, and for /1 _ co .

We prove that the answer is negative but we also prove some positive results . First
we state so=re preliminary results .

Tm oREwr 8 . 3 . (i) a c) implies R(a,

	

v) .
(ü) If

	

j3+ then

	

f, y, 8) holds (ff x-b.
(iii) 3f i=0, y > I theca R(s<, [3, y, S) is true .
(iv) If ji=1 and .-2 theca R(x, R, y, (5) is true for every J-_1 .
(v) f --_ ; then R(--, fl, Y, (5) iff /1-_J or a=J .

(i) and (ü) follow from tl,e fact that Col (~1) _=a(S ) for every graph W, . (iii) is
true because Col (S) -0 for every non-empty ~FJ . (iv) is true because if S has pro-
perty

	

(1, 3) then it has no edges . (v) follows immediately from 8 . 1 and 8. 2 .
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In view of 8. 3 we will usually assume a--y, a>6, y>#+ #--2 and it is obvious
that under these conditions positive results can be expected only if Q--6 .

In what follows we will consider the case of infinite graphs, i . e ., a--c) .
We mention that if we assume that 7 < w then interesting problems of finite

graph theoretical type arise but we do not investigate them in this paper .' The
cases we are going to investigate in greater detail are fl is finite and y is infinite .

We need some further definitions concerning graphs and colouring numbers .

DEFINITION 8. 4 . Let 'J -= g, G) be a graph and let t(x) be a function on g such
that t(x) is a cardinal number ~-- 1 for every xEg . Then t is said to be a colouring
function of W1 .

Let -< be a simple ordering of g. We say that -< satisfies the colouring function
t of ; if r(x,g~ -<x,~)<t(x) for every xEg.

By .'! . 9 and 8. 4 we have

THI,rhENi 8 . 5 . S1 has colouring number -6 if there is a colouring function t
of ~F an u a well-ordering < of g such that < satisfies t and t X -6 for every xco .

THEOREM 8. 6 . Let S be a graph (x (S) = x~ and let t be a eolou ring function of
satisfying t x = 3, for some (5 where 8 - x and J - a if a is singular . Assume g has a

well-ordering -< satisfying t . Then g has a Ivell-ordering -<' satisfying t such that

typ g(-<') = a .

PROOr-- . 8. 6 follows from 3. 3 if (5-a . If b-a and a is regular it follows from
the remark made after the proof of 3 . 7 .

DEFINITION 8. 7 . Let g be a set and aCS~( ) . We call a a disjoint partition of
type C of g if 11(a) is disjointed and U -1(a) =g.

Let _ xg, G be a graph and a a disjoint partition of g . Let t(x) be a colouring
foiled ,n of G', and let be a simple ordering of g . We say that -< satisfies t with
respect to a if -< satisfies t and a,,-<a, for every rl

LEN1MA 8. 8 . Let >, a and t have the same meaning as in 8 . 7 . Let W e denote true
graph induced by a, and let b s = (_J a,r for

Then there is a simple ordering

	

(well-ordering -<) of g satisfying t ivith
respect to a iff the following conditions (i) and (ü) hold.

(i) There e.vist ordering functions t- of S, and simple ordering relations -< -
( ,.vell-ordering relations of a . such that - satisfies tr on G, for- every , res-
i~ecüvely .

(i i) T ( .v, b., 4) --L e t(v)for every a - t~(x) for every x E a , and.for every .
(it) is equivalent to the condition
(iii) r(x, b;", el)`t(x), and t x) -- t(v) - T(x, 1) ., 5) rf t(Y) is mite t,.(-v) -- t(.A-)

rf t(x) infinite .
As a corollary of this the following condition is sufjzcient for the existence of a

shn,ole ordering -, (hell-ordering --) of N satisfying t(x) with respect to a .

In 11 . 5 we define the property P(a, (i, y, S) strongly related to R(cc, fi, S). In [151 there
are several results concerning Na, /i, S) for finite a . Results of similar type might he expected
for R(a, fI,

	

(j) too .
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(iv) For every ~ < ~ there exists a colouring . function ty of G(a, v b) satisfying
t_(x) t(_v) for x E a ., and a iti•ell-ordering -< ; of a,, u b, satisfying t,, and b, -< a~ .

PROOF . By 8. 4 and 8 . 7 .
8. 8 is an immediate generalization of 4 . 7 .

§ 9. The relation R (x, f, /, 6) in case f < w, I = w

THEOREM 9. 1 . R(a, f, w, 2 f -2) for every 2 - f -z w, and for every x .

THEOREM 9 . 2. R(w, f, w, 2f -3) is false if 2--f <w .

9 . 1 and 9 . 2 show that the answer to R . RADO'S problem is affirmative iff f -2 .
We postpone the proof of the theorems to pp . 82, 85, respectively . First we

need some lemmas .

LEMMA 9 . 3. Let =(g, G) be a graph and t a colouring function of it, tEyw .
Assume that every g' e 9 ,,(g) has a simple ordering ii'hich satisfies the colouring
fiurction t, g'

	

Then g has a simple ordering -< satisfying t .

9. 3 is a generalization of 6 . 5. The proof is an easy application of Tychonoff's
compactness theorem . We omit it .

Note that the compactness theorem obviously does not imply that the simple
ordering -< is a well-ordering . This leads to the phenomenon shown by 9 . 1 and 9 . 2 .

LEMMA 9. 4 . Let =Cg, G) be a graph, x(~)=w, and t a colouring fiurction
of it, t E 9 (o. Assume that every a E .jg) has an ordering -<, irhich satisfies t I a on
Ifla). Put s(x) = max (2t(x)-2, t(x)) . Then there exists a hell-ordering -< of g
satisfying s(x) .

PROOF . We will prove
(1) For every aEY,„(g) there exists a set a' satisfying the following conditions :

(i) a' E Y„ (9)
(ü) for every b E Y,, (g -a'), the graph a' u b has a simple ordering -< which

satisfies s ~ (a' u b) on the graph S (a' u b) with respect to the partition whose first
member is a' and the second member is b .

To prove (1) we need the following
(2) Assume aE-Vjg) . Then either a =a satisfies the requirements of (1), or there
exists a set b E Y„ (g) satisfying the following conditions

(i) r(x, aun, ~rl)-s(x) for every xEb
(ü) there is an xEb such that i(x, a, I§) -'0 .
To prove (2) assume that a'=a does not satisfy the requirements of (1 ) . Then

a'=a does not satisfy (ü) of (1) . Let b be a set with minimal number of elements
such that a u b has no ordering which satisfies spa u b with respect to the partition
with first member a, second member h . We show that this b satisfies the requirements
of (2) .

Assume x E b, T (x, a u b, g) < s(x) . Then by the minimality of b, b - Ixl satis-
fies (1) (ü) with a =a' and so a u b - {x} has an ordering satisfying s(x) with respect
to the partition a u (h - {x}) and then this ordering can be extended to an ordering



of a u b by the stipulation that x is the last element of it and the new ordering so
obtained satisfies s P a u b on ~V(a u b) with respect to the partition a u b . This is a
contradiction, hence (2) (i) is satisfied .

Assume now (2) (ü) is false. Then by the assumption both a and b have orderings
-< a and -< b satisfying tea and tab of ~~(a) and (b), respectively. Extending these
simple orderings to an ordering -< of a u b, by the stipulation ax b, the ordering
-< would satisfy t ;a u b with respect to the partition a u b . Considering that tx __ s x
for every x Eg this contradicts the definition of b, hence (2) (ü) is true and (2) is
proved .

Now we prove
(3) Assume aEY,„(g) . Let e(a) denote the nEnnber of edges of ~t(a) . Then

e(a)

	

G (t(x)-1) .
xEa

By the assumption there exists an ordering ~„ of a satisfying tw of T (a) . We
have

e (a) _

	

T (x, a 1 -< x, ~)

	

t (x) - 11
x E a

	

xEa

We prove (1) . Let aEYjg) and assume that there is no a' satisfying the
requirements of (1) . We define the sequences a i , b i by induction on i simultaneously .

Put a, =a, assume that a i , i-0 and b i ,, i 1 are already defined in such a
way that alai . If a i =ai satisfies the requirements of (1) for a, • then a ! =á satisfies
(1) as well. Thus, by (2), there exists a set b i satisfying the requirements of (2) with
a i =-a, b i =b . Put ai+, = a i ubi . Then alai+ , and a i and b i are defined for every
i~Co .

We need an estimation of e(a i+ ,) . We prove that e(ai+ ,)

	

e(ai)+
+

	

(t(x) -1) + 1 . In fact it follows from (2) (i) and (ü) that
xEbi

e(ai,,) -- e(a) +1 + 1 (( ZS(x)) -1 )2

	

xCbi

and considering that e(ai+ ,) is an integer this gives the result .
It follows by induction on i that
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This contradicts (3), hence (1) is true .
Let yE°'g a well-ordering of g . For every a E-9'jg) a' denotes a set satisfying

the requirements of (1) . We define the sequences a i , b i , c i by induction on i, simul-
taneously. Assume aj is defined for every j-i, and a; EY,,(9) . Put b i = U a,,

Acta Withenwt,- Academiae &ienNmum Ilungaricae 1 ,, 1966

e(ai+i) (t(x)-1)+i .
j=0 xEb.i

Put
(t (x) - 1) .i 0 =

Then
e(ai+i)

xEa

(t(x)-1)+i-i,,
hence for i is

xEa .+t

f (t(x)-1) .e(ai 1 ) >
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ci = b i u{y(k i)} where ki is the least integer k for which x(k) Jb i , and let a i =
= c i -b i . Then by (1) a i EY.(g) and a i , b i , c i are defined for every i.

We have
(4) {a i } i<G, is a disjoint partition of type w of g, and a i = bi+ ,-b i for every i.

Considering that b o =0, and bi+i =c, , bi =b i for every i. It follows from (1)
(ü) that the set bi+i has an ordering -< i satisfying stbi+i with respect to the partition
b i u a i . As a consequence of 8. 8 (iv) it follows that g has a well-ordering satisfying
s(x) . This proves 9.4 .

THEOREM 9. 5 . Let W=(g, G) be a graph and t a colouring function of it such
that t E 9 o). Assume that for every a E Y,, ) (g) a has an ordering -< a satisfying t P a of

(a) . Put s (x) = max (2t (x) - 2, t(x)), for x E g .
Then there exists a well-ordering -< of g satisfying s(x) .

REMARK. Theorem 9. 1 follows from 9 . 5, applying 9 . 5 for the colouring
function t(x)=P, and considering that s(x) = 2t(x)-2 if t(x)--2 .

PROOF . By 9. 4 the theorem is true if a (f) -- w. We proceed by induction on
a(f) . Put a(S) = a>w and assume that the theorem is true for every graph W
with a(f')-a . By the assumptions and by 9. 3 there exists a simple ordering ~*
of g satisfying t on W .

First we prove
(l) For every A9g there is a set B g satisfying the conditions

(i) A9 B (ü) I B J

	

A! w (iii) v (x, g I -< * x, ~V)CB
for every x E B .

To prove (1) we define a sequence A i i<w by induction on i as follows :

A,=A, Ai+i = U v(x,gl-<*x,!§)UAi .
YEA,

Considering that -<* satisfies t, it follows that IAi+,I =IA,I •w , and that B= UA i
i<w

satisfies the requirements of (1) .
Now let -1 E '(g)-V(g) such that M (A) = B satisfies the requirements of (1) for A.
Let xE"g be a well-ordering of g .
We define C, DEa,99(g) by transfinite induction on <a simultaneously .

(2) Assume C, is defined for every

	

for some <a. Put U C~ = D4 . If

g - D~ = 0, put C, = 0. If g - D~

	

0, let y, = x„ for the least i1 for which xn E g ^, D~
and let C, _ .9 (D4 u { y4 )) - D~ .

We have
(3) C is a disjoint partition of type a of g .
(4) If xED, then v(x,gI-<*x,S)SDs for <a .

(3) follows immediately from (2) . If x E D~ then x E C,, for some < . D,• u C~ _
_ V (D, u { y,}) by (2), hence v (x, g < * , ~) S D, u C, E- D4 by (i) and (iii) .

We prove by induction on
(5) IC4 1-- ICI w .

Assume (5) is true for every

	

.
Then D,J -- Z C • w = ~ •w. ID, u {y } I = ~ • w and then by (i), (ii) and (2)

we have ICJ -_ ~ •w.
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(6) v(x, D~, 5) v(x, gj -<*x, T) for every x E C, .
Assume yEv(x, D,, 9) . Then {x, y}EG, and y-<*x. For if not then x-<*y

and xEv(y, gI -< *y, 9) and xEDT by (4) . Hence yE*, g1-<*, 12,', ) .
Considering that -<* satisfies t it follows from (6) that

(7) t~(x) = t(x) -T(x, D,, T) >-0 for every x E C4 , < a hence t, is a colouring
function of 9(C) for < a .

We prove
(8) If a E -V ,(C,) then -<* satisfies t 4 t a on §(a) . If y E v(x, a', -< * x, ~§(a)) then
yEv(x, gj-<*x, T) and y~v(x, D,, 5) . Considering (6) it follows that

T(x, al -<*x, g) -:~T(x, g; -<*x, T)-T(x, D , T)--t (x) .

Put sjx) = max (2t,(x) - 2, t,(x)) for x E C, and for < a. By (5) we have
a(T(C )) < a for ~ < a . By (7), (8), and by the induction hypothesis it follows that
(9) There exist well-orderings -<, of the sets C~ satisfying s, on _e1(C,), for ~ < a .

By 8 . 8, (3) and (9) there exists a well-ordering -< of g satisfying s,(x) +T(x, Ds , T)
on T for every x E CS and for every < a .

On the other hand ss(x)+T(x, D,, 141)-s(x) for every x because

max (2(t -T)-2, t-T)+T-max (2t-2, t)

whenever t-T>0, T-10 .
Hence the well-ordering -< satisfies s on S and 9 . 5 is proved .
For the constuction of a graph satisfying the conditions of 9 . 2 as well as for

some more complicated counter-examples we need the following

LEMMA 9. 6 . Let S _ (g, G) be a graph, B E -(Sjg) {0}), A g Inhere {A} U R(B)
is disjointed. Let t E 9w be a colouring function of S . Put Ci = A v U Bj . Assume

<i
that there is an io such that

T(x, Ci+I , S) t(x) for every x E B i for i - i o .

Then no ihell-ordering -< of g satisfies t(x) and the condition

A~ UBi .
i «,

As a corollary of this, if A is finite, there is no I-vell-ordering -< of*g satisfying t, on W .

PROOF . Let T(x) briefly denote T(x, A, S) for every xE U Bi . Assume that the

theorem is false, and there is a well-ordering -< ofg satisfying t on S. Put b= U Br .
i«

Then ;b ;=w by the assumption . It follows from 8 .8 that -< satisfies t(x) - ,C(x)
on Cel(b) . Then by 8. 6 there is a well-ordering -<' of b satisfying t(X) -T(x) on S(b)
such that typ b( -<') = w .

Let b i = max{ •(Bi), c o = max{ •(Ci,,-A) .
We prove by induction on i that b i -<'co . Assume that this is true for every

j<i. Then max, ,(C i A) is either b i or co . If b i = max_jCj - A) then
T(b i , C i -A, Sn) =T(b i , b! -<'b i , TI) < t(b) -T(b) in contradiction to the assumption .
Hence b i 'co for every i. This contradicts typ b(-<) =o) and proves the first part
of the theorem .

6*
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Assume that the corollary is not true . Then, by 3. 1, Avb has a well-ordering
< of type w satisfying t(x) .

Put a'=max{(A), A'=Aubj :~ a', Bi =B i -A', Ci = U BJ' uA. Then for
;<i

some i io , Bi = B i', C i =C,' and a contradiction follows from the first part of
the theorem which has already been proved .

DEFINITION 9 . 7 . We define the graphs ~P(k, 1)=(g(k, 1), G(k, 1)) for 1-3 if k=2
and for /-2 if k-3 .
(i) g(k, 1) = w .

We define B(k, 1) as a disjoint partition of type co of o) .
(k

J

	

k
(ü) JEB i(k, l) ifJ--/ 2 i+s, 0=-s<l 2 .

We define the set of edges G(2, /) for 1-3 as follows
(iii) ; . i, i+ 1 } (G(2, /), {/i, li + l -1 } E G(2, 1) .

We define the set of edges G(k, l) for k=3, /--2 . First we define a partition
of type 1- 1 of each B i (k, 1) .

(iv) Assume JEBi(k, /), j=/1 2 i i-s,

J E Bi, I-- 2 (k, 1)

P . ERDŐS AND A . HAJNAL

iEBi ,,.(k, 1) for 0--r--1-2

0=s</ (l2
k

.

if r~2~-=s<(r+

	

k
1) 2

.

(1-2)
l
2~

	

r

	

1
t2

.

(v) (ji'}EG(k,1) if

	

EBi,,.(k,1) for some iandr</-landj<j'J'-j-k-1 .
1
1~2j i { s,l`I i-!-~~j +s1EG(k,l) for (/-2)~Zj-s (l-1)~2) .

If p li-1 for some i, p>0, then for every 0-it<k-l

kl

	

k

	

tr

	

w -}- 1
~(P -1 ) 2 1+v, p~ 2 +iv EG(k,1)fortti,(k-1)-

2

	

v<(iv+1)(k-1)-

	

2

In the
III
next lemma we are going to collect all the consequences of the above

construction which we are going to use later .

LEMMA 9. 8 . (1) LC(N(k, 1))=o) .
(ü) U Bi(k, I) = (o, and B i (k, l) = U Bi , r(k, l) for k 3 .

r<l-1

Bi(k, 1) < BJk, l) for i < i' .

B i ,(k, l) < B i ,.-(k, 1) for r < r' .

Assume j=1
1
21 i+s, 0-s-_1

1
2

1
i . e. JE,B i (k, l)

(iii) For 1-3 ii

,

e bare
0 if j=0

z(j, j, </(2,1)) = I if j > o, s / - l
2 if s=1-1 .
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(iv) For 1-- 3 we have
if s>0

T(j,

	

°̀(2, 1))

	

1 2 if s=0.
(v) For 1--3, i ::-O

if s> 0
T(j, B, ,(k, l) u B i (k, 1), S(2, 1)) -

2 3 if s=0

T(j, Bi , ~(2, 1))=2 .
(vi) For k-_3,1_-2, i>0

- 1 if O~s<(l-1) rkll J2
T( .l, .l, •~ (k, 1)) =

	

(kl

	

(kl
k

	

if (l-1)1 2 I -s- 1 (2j
-

(vii) For k 3, 1--22

v if (*) s=(li +,.+ I)
k
2

j
-v for some i, 0-r-1-1,

r~l-2, 1 ~v~k-1
k in the other cases .

i, w -i, ~(k, 1 )) _T(.i ,
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(viii) For k--3, l--2, i>0

T Bi_ k l uB k l

	

~k+v-1
(j,

	

,( ' )

	

( ' )' ~(k, Z)) = 2k -1

	

in the other cases .
(ix) If j ( B I(2, 1) for l 3 then

v(j, g(2, 1), (2, 1)) 97 B;-,(2, 1) B,(2 , 1) u Bi+,(2, 1) .

If j ( B, , r(k, 1) for k - 3, 1 2 then

if condition

v(j, g(~-, 1), á(k,1)) 8,, .-,(k,1) u B i , ,(k,1) u B,, r+, (k, 1)
where

B,,,•- ,(k, 1)=B,-, .r-z(k, 1) !f r=0

B,,, •+ ,(k, 1)=B,+,,o(k, 1) if r=/-2 .

PROOF OF THEOREM 9 . 2 . The theorem is trivial if fl =2 . We assume ~5 3. Put
/3 = k + 1 . We define a graph 5 _ ~g, G~.
(1) Let A= {a o , . . ., ak_ z } be a set of k-1 elements disjoint to w. Put g=A u w .
(2) ~(A) has no edges .
(3) r/(co) _ ~§Q, 3) for k = 2, ~(w) _ S(k, 2) for k 3 .

We complete the definition of 5 by defining v(j, A, ,q) for every j (c) .
(4) For k=2, let j=3i+s, 0--s<3

( ) oj' (vii) holds

v(j, A, ~)=0 if s=0,

v(j, A, ~7) = {a,} if s=l or s=2.
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For k--3 let j=2I Z I i+s, 0-s<2I Z I .

v(j,A,5)=0 if O--s<2(z)-(k-1)

v(j,A,W)={a,, . . .,ak_„_1} if s=2Ik _v ;

	

v=1, . . . . k-1 .

By (1) we have a(W) = co . Put briefly Bi = Bi(2

l

, 3) if k = 2, B i = B i (k, 2) if k -- 3,
and let C i= U Bj u A . By 9. 8 (ü) Bi , C i satisfy the requirements of 9. 6 . It follows

j<i
from 9 .8 (v) and (viii) and from (4) and (5) that

r(j, Ci+i , S)--2k-1 for every jEB„ i>0 .

It follows from 9. 6 that Col (W) >2k -1 = 2 f - 3 . Define the simple ordering
of g by the following stipulations ao . . . -< ak _ 2, A -< co ; If i < j < w then j -< i .
By 9.6 (iv) and (vii) and by (4) and (5) -< satisfies the colouring function f = k + 1,

and as a corollary of this every finite subgraph of S has colouring number
This proves 9.2 .

§ 10. The relation R (a, f, y, 6) in case f < co, y = w

Comparing 9 . 1 and 9.2 we see that 9 . 1 is best possible for fixed a, f, 2- f w
if y = co, but the problem whether it remains best possible for co ---T a remains
open in most cases . We can prove the following results .

THEOREM 10 . 1 . R(w,,, f , con , 2f - 3) is not true for every finite n and for 2 - f < co .

THEOREM 10. 2 . R(a, f , a, f) ,for f < a, if cf (a) = Co, a > co .

The simplest unsolved problem is

PROBLEM 10.3 . Is R(co w t , f, w i , (S) true for some f - b < 2#-2 for 3 - - r) < O)?

We mention that if R(a, f, a, f) is false for some f < a, Lx ::- co then a E Co .
(For the definition of the class C o see e .g. [10] .) We omit the proof. We postpone
the proof of 10 . 1 and 10.2 to pp . 90 and 91 respectively. We need some lemmas .

LEMMA 10.4 . Let in, n, f be integers, m 1, f - 3. We say that the graph P = (g, C)
has property m(rn, n, f) if the following conditions (i)-(v) hold.

(i) There exist sets A, B, A t t < m such that g = A u B, A A o u . . . U AM-
inhere the summands are disjoint .

(n) IA t 1=OJn for t<m, Bi=OJn .
(iii) i(x, g, 5) =1 for every x E A and I-P, (A) has no edges.
(iv) If D C A t , Dj< o), for some t < m then has a fl-colouring -< satisfying

the condition
A-(Ai-D)-<B-<At-D .

(v) No well-ordering -< of g satisfying the colouring function 2f -3 has the
property A -< B.
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Assume that there is a graph which has property cp(m, n, fl) . If m > 1 then
there exists a graph 9* 1vhich has property (f (m -1, n + 1, /i) . If m =1 there exists
a graph ~V* such that a(~V*) = co n+ I , Col (G',*) --2/1- 2 and Col (W(g')) Íl for every
g, Cg, lgti-(,)n+1 •

PROOF . Let C be a set of power o), By a well-known result of A . TARSxi [131,
there exists a sequence C,, ~ <(o,+, of subsets of C satisfying the following conditions
(1)

	

U C, = C, I C, I = co n and I C, n C, I -z con for every pai r

	

co,
4<w„+i
For every < o)n+ I let ~'f

	

G,) be a graph satisfying the conditions (i)-(v)
and the following additional requirements with the sets A,, B,, At ,, t<m
(2) A ii - 1, ,=C, for ~<o1„+1 •
(3) The set containing C, B,, At ,, for t < m -1, < w„+ , is disjointed .

We define a graph ~6* =(g*, G*) by
(4) g* = U g~, G* = U G* .

<w„+t

	

<co„+t

(5)At= 11 A t, , for every t < m-1,

A* = U A,*, B* = C u U B,, §* (g,) _ S, for
t<in-1

	

~<w„+i

It follows immediately from (1)-(5) that

(6) If m > 1 then W* satisfies the requirements (i), (ü) and (iii) of the property
9-,(m -1, n, /i) and if m = I then a(W) = w„+, .

We prove
(7) No well-ordering -< of g* satisfying 2/1-3 has the property A* -<B* .

Assume that (7) is not true and let -< be a well-ordering of g* satisfying 2f3-3
and such that A* -<B* . Then by 3. 1 and 8. 8 we can assume that

typ B*(-<)=con+1 .

Considering that by (1), JCJ=con then there exists a pro n+I such that C-<B, .
But then by (1)-(5) -< is a well-ordering of g, such that A,-<B, and -< satisfies
2/i - 3 on Q6', . This contradicts (1) and thus (7) is true .

(7) means that ~* satisfies requirement (v) as well and that Col ff;*) :~-2f -3
if m=1 .

To prove that S* satisfies (iv) we need some preliminaries .
(8) Put h, =~Ug,, H, = U G,

	

~=~h, , H,) .
We prove that

(9) For every r < con+ , h, has a well-ordering -< satisfying Q on YP, such that

A* nh,-<h,-A* .

We can assume that w„ ~ . Let ~ E-n be a well-ordering of type con of ~. For
every < con put D,= C,~ ( , ) n U C~, (n) . By (1) and by the regularity of con we have

n<~
D, ; «n . By (1)

	

satisfies the requirement (iv), hence there exists a well-
ordering -<, of g,,(,) satisfying /3 on

	

and such that
(10)

	

,B~t ,~
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Actü Mathe,natica A<adanciae S, ;ent,aranr Hungaritae 1-, 1966



88 P . ERDŐS AND A . HAJNAL

We choose a well-ordering -< of h~ satisfying the following conditions
(11) A* nh~-<A* -h,,
-< is an arbitrary well-ordering on A* nh s . (Note that W(A* r) h,) has no edges .)

Put E, = U (B,(n) v C,(n)), F~ - Bo(~) u Co(~) .n<S
Then by (1) and (3) E,nF,=D, for <w,, .
Put E,-< F~ -D, and for every ~< w„ let -< coincide with -< s on the set Fz - D- .
By 8. 8 and (10) every well-ordering -< of h, satisfying (11) satisfies the requi-

rements of (9) .
(6), (7) and (9) prove the theorem in case m =1 .
Assume m > 1 and D C Ar, IDI -_ w„ for some t < m - l . Let ~, < w„ + i such that

D n A,, 4 = 0 for every o . .By (9) there exists a well-ordering < o of h, o such that
(12) A* nh~,-<~Oh~O-A* .

For every

	

~ 0 , by (1), there exists a well-ordering

	

5 of g, satisfying /3 and
such that
(13) A

	

At,

	

s B

	

Ai, s
We choose a well-ordering x of g* satisfying the following conditions

(14) A * (Ar -D)-<B*,
-< is an arbitrary well-ordering on A* -(Ar -D) .

On B* we choose --< so that

h <C-h~o < U B~ .
So

Let -< coincide with -<,,, on h, o , and with -< , on B 5 for 5 - ~ 0 .
B*-<A, -D and -< is arbitrary on Art -D. U'sing (1), (12) and (13) it is easy

to verify that every well-ordering -< of g* satisfying the requirements of (14) satisfies
/3 and is such that A* (A t* D) -< B* -< A t* - D. Hence lp* satisfies the requirement
(iv) of (p(m -1, n, /3) for tn> 1 . In view of (6) and (7) this concludes the proof of 10 . 4 .

LEMMA 10 . 5 . For every m --1, 3 =~ < w there exists a graph ~el(g, G) lrhich
has property (/ (in, 0, [3) of 10 . 4 .

PROOF . Put /3 = k + 1 .
(1) Let A be a set Anw=O, JA S=w . Put B=w. It is obvious that there exists
a graph §=(g, G) satisfying the following stipulations
(2) 5(A) has no edges .
(3) '§(w) _ IjW(k, m + 2) .

(Note that ~V(k, in + 1) would be good as well except in case k = 2, in =1, where
9(2, 2) is not defined .)

Assume jCBi(k, m+2)i.e . j=(m+2) Ic2
i + s where O--s<(m+2)

k
2 .

We conclude the definition of by defining -c(j, A, 5) for j Ew, and by
(4) i(x, B, W/) =1 for x E A .
(5) Assume k=2. Put

T(j, A, W) =
1
0
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(6) Assume k-3. Put

k-v whenever v satisfies condition ( ) of Lemma 9. 8 (vii)
T( j, A, ~) = 0

	

in the other cases .

We define the sets A0, . . ., Am_, .

First we define the subsets B(O) , . . ., B(m) of B as follows .
(7) If k=2, j = (in +2)i+s, 0-s~m+2

jEB(0 if s=t for 0-.term-l

jCBW if s=m or s=m+1 .
(8) If k _- 3 put

ON CHROMATIC NUMBER OF GRAPHS AND SET-SYSTEMS

B(t) = U Bi , t (k, m+2) for 0-t<m-1
i«

89

B(m-1)= U (Bj,m-I(k, in +2)uBi,„,(k, m+2)),

	

B(m) = 0 .
1<(0

(9) Put
A t = {xEA :xEv(j,A, ) for some jCB(t+I)}

for 0~t<m if k- =2 and

A, = {x E A : x E v(j, A, 5) for some i E B(0I

for O--t<m if k73 .
It is an immediate consequence of the definitions that W, A, B, A t, 0-_t<m

satisfy the requirements (i), (ü), (iii) of T(m, 0, P) stated in 10.4 .
Put briefly Bi = Bi(k, m + 2) for every i and Ci = U Bj U A .

It follows from 9 . 8 (v) and (viii) and from (5) and (6) that for every i > 0 for
every j E B i we have

T(j, Ci+, , N) = 2k - I = 2a - 3 .

It follows from 9 . 6 that no well-ordering -< of g satisfying 2# - 3 has the property
A-< B. Hence

	

satisfies requirement (v) of 10 .4 as well .
Assume D 97 Ar , IDI < co for some t < m . Choose a well-ordering -< of g satisfying

the following conditions :
(10) A-(A,-D)-<B-<A,-D,
< is an arbitrary well-ordering on the sets A - (A t - D) and At - D.

It remains to choose -< on B=co. There exists an i0 such that v(j, D, IN) =0
for every j E B i (k, m + 2) for i > i0 .

Let U Bj <

	

U Bj and let -< coincide with > on the set U Bj . To
; io

	

;-io

	

;~io
choose -< on the set co - U Bj we distinguish the cases (1) k = 2 (11) k _- 3 .

(I) Choose -< so that
B,-<B, , for every i0 < i< i'< w

and choose -< as an ordering of the circuit W (B,) satisfying the condition

v(j, B i , W (B j))

	

I for every j q B(1+I)

v(j, B i , S(Bj))

	

2 for every jEB<<+I> .
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(II) Put briefly B,,, = Bi, r (k, m + 2) for 0 -- r-- m

Do= U B ip+0=r<t E0 = Bi o +i,t

Di+i = U Bio+i+iu U Bio+2+E,r
t<r<_m

	

0=r<t
for every i< oJ .

Choose -< so that
DO-<Di-<E0-<D2-<E1-<D3-< . .*

coincides with > on D i , -< coincides with < on Ei .
To see that satisfies the requirement (iv) of T (m, 0,13) of 10 . 4 it is obviously

su fficient to see that c (x, g I -< x, 9) -- k for every x E g whenever -< satisfies the
requirements of (10) . If x q co this is trivial from (2) and (4) . If x E U Bj this follows

i-io
from (5) and (6) using 9 . 8 (iv) and (vii) . In case (I) for X E w - U B; the statement

j-io
follows from (7), (9) and 9. 8 (v) and (ix) . In case (II) using (8), (9) and 9. 8 (vii)
and (ix) the statement follows easily for every x E Di . For x E Ei we have to use (8),
(9), 9. 8 (vi) and (ix) and the following fact which easily follows from the definition
9 . 7 of the graph (k, m + 2)

If j E B i , r for some 0 r < m then i (j, oo - (j v Bi, r), (k, m + 2)) = 1 . This
proves that

	

satisfies the requirements of 10 . 5 .

LEMMA 10. 6 . For every m, n, f3, m --1, 3 Q < w there is a graph which has
the property T(m, n, /3) of 10 . 4 .

PROOF . By induction on n . If n = 0 10. 6 is true for every fl, m satisfying the
requirements, by 10 . 5. Assume that 10 . 6 is true for some n for every m 1,
3 -- Q < w. Then by 10 . 4 it is true for n + 1, for every m ~-- 1 and 3 Q< Co .

PROOF OF THEOREM 10 . 1 . 10 . 1 is trivial if a = 2 . Assume 3 - < Q) . If n = 0
10. 1 is true by 9 . 2 . Assume n ::-O . By 10. 6 there exists a graph which has property
T (1, n -1, /3) of 10 . 4. By 10. 4 then there exists a graph ~§* such that a (§*) = O)„,
Col (,§*) -- 2a - 2 and Col (;6* (g')) - fi for every g' E- g*, I g' j < o) . This proves 10 . 1 .

We need a further lemma for the proof of Theorem 10. 2 .

LEMMA 10. 7 . Let S _ (g, G) be a graph which possesses property D (/3, y) . Let
ASg, IAI=e such that (~ e, w -- e+<y. Then there exists a subset B satisfying
the following conditions :

(i) A ( B, IB I = e .
(ü) For every C ( g - B, C I < y there exists a l3-colouring -< of S (B U C)

such that B -< C .

PROOF . First we prove that there exists a set B satisfying the condition (i) and
the following condition

(iii) For every C

	

g -B, IC e, there exists a (3-colouring -< of S (B U C)
such that B -< C.

Assume that there is no B satisfying (i) and (iii) . That means that for every
AFB, CBI =e there exists a T(B) satisfying the following conditions
(1) cp (B) E- g - B ; I cp (B) I e, and 1(B v (p (B)) has no /3-colouring -< satisfying
B -< cp (B) .
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We define a sequence A,, < E+ of subsets of g by transfinite induction ~ as
follows .
(2) A o = A . Assume that A~ is defined for every < for some 0 < < e + in such
a way that IAJ--E . Then I U A E I = E. Put A y = (p( U A). Then IA,I--E and A 4

is defined for every < E+ .
Put further D = i U A i . Then !DI =E+ . By the assumption and by 3 . 2 "I(D)

S <E+
has a /3-colouring

	

such that
(3) typ D(-<) _ E+ .

Using (2), (3) and the regularity of e + it is easy to see that
(4) There is a o < E+ and an xo E D such that

5<40

It follows from (4) that U A <A~ 0 , Considering that -< is a f3-colouring of

,2~(D) this contradicts (1) and (2) .
Hence there is a set B satisfying the conditions (i) and (iii) . We prove that the

same set B satisfies (ü) .
Let C (-- g-B, ICJ <T. By the assumptions there exists a (3-colouring -<' of

,~§ (Bu C) .
We define a sequence Bi of subsets of B u C by induction on i as follows .

(5) Ba = B ; Bi I = U v(x, B u C -<'x, Crl (B u C)) .
CEB,

Put D= U Bi .
i<w

Considering that A' =E and i(x, Bu C! <'x, §(Bu C)) < Q because of <'
is a /3-colouring it follows that
(6) Bc-DCBuC ; IDI=E, for every x(D

v (x, B u C I -<'x, ~) (B u C)) (- D .

Considering that B satisfies (iii) we can choose a (3-colouring -< of ~'I(D) such
that B-<D-B . We define the well-ordering -<* of BuC as follows .
(7) -<* and -< coincide on D -<* coincides with -<' on (BuC)-D = C -D
D-<*C-D .

-<* obviously satisfies B-<*C. To prove that it is a /3-colouring by (7) it is
sufficient to see that T (x, B u C J -< * x, (B u C)) -< /3 for every x E C D .

Assume yEv(x,BuCI-<*x,§(BuC) for some xEC-D.
We prove that then y Ev (x, B u C I ~Pl (B u C)) . If y E C - D this follows

from (7) . Ify E D and {yx} E G then y -<'x for if not then x E v(y, B u C I -'y, SP (B u C))
and x E D, by (6) .

Considering that -<' is a /3-colouring of ~V(BuC) this implies the statement
and B satisfies (ü) .

PROOF OF THEOREM 10 . 2 . Let S =(g, G) be a graph, a (W) = a, which has property
D (fl, a). By the assumptions there exists a (p E wa such that
(1)

	

U (p i = a, (p i <(pi,, (p, i is a cardinal,

	

uo) for every i<i ' < 0) .
i<w

Let h E `°g be a disjoint partition of g satisfying
(2) I h i ! =(p j for i-< (t) .
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If A C --g, JAI =e, p u co e < a then by the assumption and by 10. 7 there exists -
a set B satisfying the conditions (i), (ii) of 10. 7 .
(3) Let (A) denote such a set for every A satisfying the above conditions .

We define a disjoint partition a of type co of g as follows. Assume that aj is
defined for every j < i in such a way that iaj J < a .

Put a i = '% W a i u h i) U aj for i < uJ .
j<i

Then by (2) and (3) we have a,, -:a and by (2) a is a disjoint partition of g .
By the assumption and by (3) the set U a i has a fl-colouring

	

i such that
j i

U aj <ai . Lemma 8. 8 implies that then Col (W)
j<i

§ 11 . The relation R (a, /3, y, (5) in cases /i w . Problems

In case /3 - co, our results are rather incomplete . Using the results of § 5 we
obtain some positive results but in most cases we cannot prove that they are the
best possible . We are going to state some typical unsolved problems .

As an immediate consequence of Definition 2. 12 we have

LEMMA 11 . 1 . Assume 0 < Q< f3'. Then [[l3, /3' ]] has colouring number > lf .

LEMMA 11 . 2 . Assume that for some 0 < l3 < f3'< y, Col (a, 6,

	

Then
R (a, fl, y, (5 )

PROOF. Let

	

be a graph a(f)=a which has property D(/3, y) . Then

	

does
not contain a [[/3, /3']], by 11 . 1 . Hence by 5 . 1, Col (~fl ~- b .

THEOREM 11 . 3 . Assume that G . C. H. holds and fl-(o . Then
(i) R (a, l3, fl ++, a +) holds for every a a (l3)
(ü) R(a, f, i++ Í3 ++) holds for every a .

PROOF . By 5. 5 (i) and (ü) Col (a, f3 + f3 ++ P) and Col (a, /3 + + f3 +++ f3)
hold in cases (i) and (ü), respectively. Hence 11 . 3 follows from 11 . 2 in both cases .

Comparing this result with 8 . 3 we see that the following problems remain
open . Assume

Is R(a, f, /3++, /3) true for some (or every) a >/3?
Is R(a, /3, a+ , a+) true for some (or every) a>a(fl)?
Are R(a, /f, y, fl) or R(a, /3, y, /3+) true for some /3++--y=-"a?
9.2 gives a positive answer to the last problem in case cf(a)=w, a ::- (t) .
We state the simplest unsolved problems .

PROBLEM 11 . 4 . (i) Is R(w z , co, co z , (o) true?

(ü) Is R (co n„ i , w, o)2, (o,) true?

DEFINITION 11 . 5. The relation P(a, l3, y, ó) is said to hold if every graph with
x(~)=a has chromatic number -5 provided every subgraph of power <y of it
has chromatic number --fl .

The problem involved in the relation P is well known and is stated, e . g ., in
[5] . The DE BRUnrr-ERDŐs theorem [2] mentioned in the introduction states
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P(a, f, u), fl) for every finite fl and for every a . No non-trivial result is known in
cases f ?w . The simplest unsolved problem (assuming the G . C. H .) is
P(co z , w, w z , (o) . This should be compared with 11 . 4 (i) . We mention that while
as a corollary of 11 . 3 we have R (w, , w, w-, , (o ,) the problem whether
P(wz , w, w z,, co,) holds is unsolved .

We mention the following

THEOREM 11 .5 . Assume f -w. If the f3 product space of an a-termed sequence
of two-point discrete topological spaces is y-compact then both

P(x, f , T, P) and R(a, f, y, f) hold.

For the concepts appearing in 11 . 5 see, e . g ., [10] . The condition fl -w can
be omitted in case of P but not in case of R as is shown by 9.2 . 8

We omit the proof which is well known in case of P and is easy in case of R.

§ 12. Some remarks and problems on general set systems

As a generalization of the problems investigated in 5 . 1 one can consider pro-
blems of the following type . What kind of special set-systems are necessarily
contained in a set-system Ye = \A H) with a(Ye) =a, Col (,e) > f3 or Chr
respectively. It is obvious that it is possible to obtain immediate generalizations
of Theorem 5. 5 for uniform set-systems (see Definition 2 . 4) with 3

	

< w but
we do not know whether these results are best possible and so we do not investigate
this problem in this paper. However in case ;,~ ( ./e)=3 some simpler problems arise
which are of a different type from the ones considered in case v(Ye)=2 . We just
formulate a result and a problem concerning one of them .

THEOREM 12 . 1 . Let -Ye = (h, H) be a uniform set-system i-vith a(,le) = a., Y(e) = k,
2, k < w and let f be an infinite cardinal number . Then one of the following conditions
(i), (ü) holds

(i) There are disjoint subsets ho , h I C-h such that Ih o I = k-1, 1h,I = f+ and
ho v {x} E H for every x E h r .

(ü) Col ( ./e) = f .

In case k=2, 12. 1 is a trivial special case of 5 . 5, in case k ::-2 it can be proved
easily using the idea of 5. 5 . We omit the proof.

From 12 . 1 we have

COROLLARY 12. 2 . Under the assumptions of 12 . 1 one of the following conditions
(i) and (ü) is true

I to [10] it is proved that the a-product space of an a termed sequence of two point discrete
topological spaces is not a compact for a wide class of cardinals a . As a generalization of this result
using G . C . M . in [16] it is proved the coy-product space of an a-termed sequence of two point dis-
crete topological spaces is not a compact for many cardinals a . It is not known whether these results
hold for every a . 11 .5 is stated here merely to show that there are some connections between the
problems treated in the relations P, R and in [101 respectively . Since these problems are not the
topic of this paper we omit references to further relevant results . As to the definition of the concepts
used in 11 . 5 and in this remark we refer to [10] .
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(i) For every I ::-k, there exists a subset h'(--- h such that jh'j =land ; {A E H:A C_
Ch'}j-l-k+1 .

(ü) Col ( ) - co .
We do not know whether I-k + 1 is best possible in 12 . 1. We mention a very

special problem we cannot solve .

PROBLEM 12. 3. Let ., be a uniform set-system a( ) = co,, x(Y) = 3 . Is it
true that one of the following conditions (i) or (ü) holds?

(i) There is h' c~ h, lh'I = 5 such that I {A E H :A (-- h'}j --4 .
(ü) Col (11) - co (or at least Chr ( ~) - (o) .
Note that using the method of [17] theorem 28 we know that if C . H. holds

and 4 is replaced by 5, then the answer is negative and as a corollary of 12. 2 we
know that 12 . 3 is true if 4 is replaced by 3 .

§ 13. On chromatic number of finite set-systems

First we prove a very simple and special theorem

THEOREM 13 . 1 . Let Al =(h, H) be a finite uniform set-system, such that g( _,Y) =n,
x(~P) = 3 . Assume that

	

has property C(2, 2) i . e., for X YE H, l X n YJ -1

Then h contains an independent subset h' such that h'j -[1 2n] . 9

PROOF. Let h' be a maximal independent subset of h . Put álíj=r. By the maxi-
mality of h for every x E h - h' there is an element AX of H such that Ax - {x} c h' .
It follows from the assumption that ~A. n Ayj -1 for x z y E h h' . We obtain

Ih-h'j = n-r - (
l

r•
r

	

or r-- [V2n] .

We do not investigate here some possible generalizations of this theorem for
uniform set-systems with x(1~) >3, but we are going to discuss one possible improve-
ment of this theorem which will turn out to be false . Namely one would guess that
the result r-[Cn ] trivially obtained above is very far from being the best possible,
and that it can be replaced by r ::-cn with some real number c .

As a consequence of the main result of this section it will turn out that it is
not true, and even r ::n' - ` is not true for some fixed e>0 .

Before stating the main theorem we mention that a graph =~g, G) contains
a circuit of length -s iff there is a subset G' of G such that 0 < ;G'~ =t-s and
juG'j--t .

Let Ye =~h, H) be a uniform set-system, x(H) = k, 2 -k < co. The above remark
makes it possible that without defining the concept of a circuit for k = 3, we define
the concept of s-circuitless uniform set-systems for s < co .

DEFINITION 13 . 2 . Let _Ye = ~h, H) be a uniform set-system, x(H) =1c, 2 - k < w .
,YP is said to be s-circuitless if for every 1- t - s, and for every H'(--- H, I H'j = t

juH'j-1+(k-1)t1

I In this section [xl denotes the integer part of the real number x . In what follows we use many
other usual notations of number theory not introduced in § 2 . S, s, rt denote real numbers .
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Using this concept our main theorem is an immediate generalization of a
theorem of P. ERDŐS [4] already mentioned in the introduction .

THEOREM 13 . 3 . For every k--3, and for every s there is a real number ek ,s >0
and an integer nk, s such that for every n ::,nk,s there exist a uniform set-system Y," _
_ (h, H) such that a(Ie) = n, x(-Yf) = k, dr is s-circuitless and h contains no inde-
pendent subset of more than ,n I-Ek, elements .

From 13. 3 we get

COROLLARY 13 .4. For every k_-2, r, s there exist uniform set-systems Yf
with x(lr)=k such that Ye' is s-circuitless and Chr (,Yf)--r or as an equivalent
formulation to this, for every k--2 and for every s there exists a uniform set-system
~, with a(.Yf)=a), x(,E)=k, which is s-circuitless, and has chromatic number co .

We mention that at present we find hopeless the exact determination of r, , ,
appearing in 13 . 3 .

We postpone the proof of 13 . 3 . First we state and prove a simpler theorem
which shows that 13 . 3 is in some respect best possible .

THEOREM 13.5 . Let Y' = (h, H) be a uniform set-system such that x( ) = k, 2 -- k.
Assume that for some t --1, and for every H'( -- H, I H' I = t, I UH' j -- 2 + (k -1)t .

Then the colouring number of .*' is at most t .
As a corollary of this if a(L)=n then htl contains an independent subset of _-n/t

elements .

PROOF . By the assumption I V(x, h, )j < t for every x E h, and by 3.1 .
The estimation Col ( ) t is obviously not best possible, but we do not inves-

tigate this .

PROOF OF THEOREM 13 . 3 . We will use the probabilistic method described
e. g . in [4] . First we briefly outline the proof .

We will consider a set h of n elements . Then we will choose an H(--- S,[h] of
[n I +, ] elements at random (where n will be determined later) . The idea of our proof
is that for the most choices of H, the condition that is s-circuitless is rarely
violated, and on the other hand every subset of at least n--'k,, elements of h will
contain many elements of H. So we will find an H such that omitting few elements
of it we obtain an H' so that the resulting set-system (h, H') is s-circuitless andd
does not contain an independent set of nI-Ek- elements .

Put N=[n l + n] .
Let AN= {H:HC .91k [h] and Hj=N} .
Clearly

1 !A = (k)
N

Let l, m be integers . Denote by A,(l, m) the set
(2) {HEAN: there exist an h' (---h, jh'j=m such that jHn9k[h']j--l} .

We want an upper estimation for the cardinality of A,(l, m) .
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(3)

(6)

For every fixed h'(---h, ;h'j=m the number of HEAN satisfying (2) is exactly

i=o

~n ~11
k,

	

k
N-i

Hence by (2) and (3) we have

(4) IA N(1 - fn)i `_-

P. ERDŐS AND A . HAJNAL

~
in
k)

	

(k) (mk )

~ i

	

N-i

We prove the following lemma

(5) Assume 0<ri< s, I=n, rn=[ni-E~~,s] where 0< c~;,<Zk . Then

To prove (5) observe that
j .

	

-F

k1 - (Ic)

	

~k)
N-i

	

N

-1

n
k)

IAN(1, in)I = o

	

N

	

.

provided n is big enough and i <2 . Hence under the conditions of (5) by (4)

and (6) we have

AN l, m

	

lkl
( ) N

This proves (5).
For an arbitrary HEAN we denote by z(H) the number of elements of the set :

Z(H) _ {h'(---h :Ih'j = (k-1)t, t - s and IY,[h']r)H! -t) .

We denote by z the expected number of z(H) if HCAN is chosen at random .

Considering that the number of those h' which have (k-1)t elements is

	

n
((k-l)t;'

N

M

	

in

<
n

1-lk

a

	

lkl
(m

	

n

	

a

k

n

and that for every h', (Ili 1=(k-l)t) there are at most ((k
t
1)tl N1c

t H's satisfy--j-j
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(k)
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ing the condition 191,á [h'] n HI --t we have

In

	

S

	

n

(7) z -

	

kjj
N

	

/>t ((k n 1) t) ((k t 1)t) Nk t
r=2

An easy computation shows that then there exists a real number c such that

(8)

	

z<c N S .
n

It follows from (8) that for all but o

(N) Slog n .
n

((k -1) s)
Ic

By (5) and (8) if n is sufficiently large then there exists an H E A n, such that
it satisfies (9) and (10) .
(9) For every h'ch, jh'I~[n`-Ek,-=] we have jHn91,[h']j--n .

(10) The set fx :xEH and xCh'for some h'EZ(h)} has at most
((k,c1)s) (n) 'log n

elements .
Considering that this number is smaller than n, for sufficiently large n, omitting

the elements of the set defined in (10) from H we obtain a set H', such that the set-
system YP=(h, H') has no independent set of [n' -E,,, ] elements, by (9), and is
s-circuitless by (10) . This proves 13.3 .

The question arises how large can s be as a function of n so that our set-system
is s-circuitless, and the chromatic number is still unbounded . Our proof gives that
if' s=o(log n) then the chromatic number can be unbounded ; we omit the details .

To show that this best possible we outline the proof of the following

THEOREM 13 . 6 . Let .$'_(h, H) be a uniform set system a( )=n, x(,$')=k
Assume that there is a real number c ::- 0 such that ,P is s-circuitless for some s c log n .
Then there exists an integer m o(c) such that Chr (XX) --ma(c) for every n . As a corollary

of this Ae contains a free set of	 n

	

elements .
1m,(c)

To prove 13 . 6 it is convenient to make the following

DEFINITION 13 . 7 . Let =(h, H) an arbitrary set-system . We say that Af has
quasi-colouring number l3 if fl is the least cardinal for which there exists a well-
ordering -< of h satisfying the following condition .

Whenever V V(x, hI -< x, ) and A n B = (x) for every A z B E V then I V j < /l .
The quasi-colouring number of

	

will be denoted by Col*(,,Ytl) .

If h' E z(H) then lh' n HI --Yjh]

97

systems H E AN we have z(H)

7
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As an immediate consequence of the definitions we have

Col* (~( ) -- Col (_'e)

and as an easy generalization of 3 . 1 one can prove

THEOREM 13 . 8 . Under the conditions of 3 . 1

Chr (.YP) -- Col*

13. 8 is to be seen quite similarly to 3 . 1 . We omit the details .
If s is a graph then obviously Col ( )=Col*( ) . For general set-systems

in some sense, the quasi-colouring number seems to be a more appropriate gene-
ralization of the colouring numbers of graphs than the ordinary colouring number
defined in 2 . 9 . Throughout this paper we prefered the ordinary colouring number
because the quasi colouring number fails to possess some simple and important
properties of the former one . For example theorems 3 . 2 and 3. 3 are no longer
true for quasi colouring numbers . We omit the simple but not entirely trivial example
we have for this fact . Though a detailed examination of the quasi colouring number
might be useful, in this paper we are going to use it only in the proof of 13 . 6 .

PROOF OF 13. 6 (in outline) . Considering that by 13. 8, Chr

	

--Col* (C'')
it is sufficient to see that Col*(Y() is bounded .

Assume Col* (,( ) m. It is easy to see by induction on a(3Y') that then for every
x (h there exists a

	

V(x, YE) such that V_ --m and A -I B E V, implies A n B =11x} .
Let xo be an arbitrary element of h .
Define V(i) by induction on i as follows

V(o) =11x0 } u U V,

V(i+1)=Vi u U (WV.,)-
At V,

Considering that .Yt,' is [c log n] circuitless it is easy to see that then

n - I V([c log n])I - ((m -1) (k -1))[ ios nl-i

Hence m = in je) .
In connection with the problems considered so far the following problem arises :
Let n be large, and let k=(h, H) be a uniform set-system with v.(,)r)=k,

a(Y1') = n and such that if x z y F H then I x n y ; 1 i . e., H has property C(2, 2) .
How large does k have to be in order that the system should have property B (i . e .,
chromatic number 2)? 10

The same question can be asked if we only assume that H has property C(2, r)
for 2 =r<k.

The following theorem shows that the right order of magnitude for k is c log n .

10 As far as we know T . GALLM raised the problem if there exist k, and n such that satis-
fies the requirement of this problem . An affirmative answer is given in [181 . 13 .9 seems to be a stronger
result in this respect .
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THEOREM 13. 9 . For sufficiently large n there exists a uniform set-system JE _ (Iz, H)
such that a(ft) = 21 on, ,(H) = n IHI = 2 11 " H has property C(2, 2) and for every

Zion
independent subset h' (- h, I,h' ; -	

2
As a corollary of this H does not possess property B .

The proof can be carried out using the probabilistic method described above .
We omit the details .

(Received 14 April 1965)
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