SOME REMARKS ON SET THEORY, X.

by

P. ERDŐS and M. MAKKAI¹

Let A be a set, G a class of subsets of A and $a = (a_n)_{n < \omega} \in A^{\omega}$ a sequence of elements of A. We say that G strongly cuts a if for every $n < \omega$ there exists an $X_n \in G$ such that $a_i \in X_n$ for i < n and $a_i \notin X_n$ for $\omega > i \ge n$. The complement A(-)G of G is the system of all sets A - X such that $X \in G$.

Now we are going to prove the following theorem.

THEOREM. If A is an infinite set, G is a class of subsets of A such that |G| > |A|, then there exists an infinite sequence in $A^{\circ\circ}$ which is strongly cut by G or by A(-)G.

PROOF. Assume the conditions of the theorem. For a subset B of A and a class H of subsets of A we denote by $B(\cap)H$ the class of all sets $B \cap X$ with $X \in H$. We write \overline{X} instead of A - X (with the specified A). If $a_0, ..., a_{n-1} \in A$ then $G_{a_0, ..., a_{n-1}}$ will denote the class of sets in G containing all of $a_0, ..., a_{n-1}$.

We distinguish two cases (i) and (ii).

(i) First we suppose

(1) For any $B \subset A$ and $H \subset G$ such that $|B(\cap)H| > m = |A|$ there is an X in H for which $|(B \cap \overline{X})(\cap)H| > m$.

In this case we prove that G strongly cuts a certain sequence in A^{ω} .

We define by induction a sequence a_0, a_1, \ldots of elements of A and a sequence X_0, X_1, \ldots of sets in G such that, for every $k < \omega$, the following two conditions hold:

(2)
$$a_0, \ldots, a_{k-1} \in X_k; a_k, a_{k+1}, \ldots \in X_k$$

and

$$|(\overline{X}_0 \cap \overline{X}_1 \cap \dots \cap \overline{X}_{k-1})(\cap)G_{a_0,\dots,a_{k-1}}| > m.$$

By (1) and the conditions of the theorem there is an X_0 in G with $|\overline{X}_0(\cap)G| > m$. Hence there is an element a_0 in \overline{X}_0 such that $|\overline{X}_0(\cap)G_{a_0}| > m$. (In the contrary case we would have that $\overline{X}_0(\cap)G \subseteq \bigcup_{a \in \overline{X}_0} (\overline{X}_0(\cap)G_a) \cup \{0\}$ is of power at most

$$m \cdot m + 1 = m$$

Now assume in general that $n \ge 1$ and we have defined $a_0, ..., a_{n-1}; X_0, ..., X_{n-1}$ such that

$$(4) a_0, \dots, a_{k-1} \in X_k; \ a_k, a_{k+1}, \dots, a_{n-1} \in X_k$$

for k < n and (3) holds for k = n. Then applying (1) with $G_{a_0,\ldots,a_{n-1}}$ in place of H

¹ Mathematical Institute of the Hungarian Academy of Sciences.

we obtain a set X_n such that

(5)

$$X_n \in G_{a_0,\ldots,a_{n-1}}$$

and

$$(\overline{X}_0 \cap \ldots \cap \overline{X}_{n-1} \cap \overline{X}_n)(\cap) G_{a_0,\ldots,a_{n-1}} | > m.$$

Thus we have an element a_n such that

(6)
$$a_n \in \overline{X}_0 \cap \ldots \cap \overline{X}_{n-1} \cap \overline{X}_n$$

and the class of the sets in $(\overline{X}_0 \cap ... \cap \overline{X}_{n-1} \cap \overline{X}_n)(\cap)G_{a_0,...,a_{n-1}}$ containing a_n , is of power >m, i. e.

(7)
$$|(\overline{X}_0 \cap \ldots \cap \overline{X}_n)(\cap)G_{a_0,\ldots,a_{n-1},a_n}| > m.$$

Considering (4), (5) and (6) we see that

(8)
$$a_0, \ldots, a_{k-1} \in X_k; a_k, a_{k+1}, \ldots, a_{n-1}, a_n \notin X_k$$

for $k \leq n$. (8) and (7) show that we have just the conditions for n+1 which were assumed for *n*. Thus by induction (and the axiom of choice) we have proved the existence of $(a_n)_{n<\omega}$ and $(X_n)_{n<\omega}$ with the required properties. In particular by (2) we see that G strongly cuts $(a_n)_{n<\omega}$.

(ii) Now we suppose that (1) does not hold, i. e. there is a subclass H of G and a subset B of A such that $|B(\cap)H| > m$ and for every $X \in H$ we have $|(B \cap \overline{X})(\cap)H| \leq m$. In this case we prove that A(-)G strongly cuts a certain sequence $(a_n)_{n < \omega} \in A^{\omega}$. First we show that we may assume B = A and H = G, in other words that

(9)
$$|\overline{X}(\cap)G| \leq m$$
 for every $X \in G$.

Suppose that we have proved that the hypotheses of the theorem and (9) imply that A(-)G strongly cuts a sequence in A^{ω} . Applying the suppositions of case (ii), we see that the conditions of the theorem and (9) hold for B and $B(\cap)H$ instead of A and G, respectively. Thus we have a $(b_n)_{n < \omega} \in B^{\omega}$ which is strongly cut by $B(-)(B(\cap)H)$, hence, a fortiori, $(b_n)_{n < \omega} \in A^{\omega}$ is a strongly cut by A(-)G.

Assuming (9), we shall show that (1) holds for A(-)G instead of G, which implies by case (i) that A(-)G strongly cuts a sequence in A^{ω} ; this will complete the proof of our theorem. Indeed, suppose $B \subset A$, $H \subset G$ and $|B(\cap)(A(-)H)| > m$. This is equivalent to say that $|B(\cap)H| > m$. Then taking an *arbitrary* set X in H we have $|\overline{X}(\cap)H| \le m$ and a fortiori $|(B \cap \overline{X})(\cap)H| \le m$. But this implies $|(B \cap X)(\cap)H| > m$, because assuming $|(B \cap X)(\cap)H| \le m$ we would obtain $|B(\cap)H| \le m$. Indeed, every set in $B(\cap)H$ is the union of one in $(B \cap \overline{X})(\cap)H$ and one in $(B \cap X)(\cap)H$ and so we could have in $B(\cap)H$ at most $m \cdot m = m$ sets. Thus we really have $|(B \cap X)(\cap)H| > m$ which means that an arbitrary $\overline{X} \in A(-)H$ is suitable for the X of case (i), hence our proof is complete.

Now we state some unsolved problems.

A large "presque-disjoint" system G of subsets of a set A of power \aleph_0^{-1} shows that the first alternative of the theorem is not always true.

¹ i. e. $|G| > \aleph_0$ and the intersection of any two sets in G is finite.

Studia Scientiarum Mathematicarum Hungarica 1 (1966)

158

However the analogous question in the case of a set of power \aleph_1 remains open.

PROBLEM 1. Let $|A| = \aleph_1$, $|G| > \aleph_1$. (G is as above). Does G cut always strongly a sequence in A^{ω} ?

If α is any ordinal, we may ask a similar question concerning the existence of $a \in A^{\alpha}$ strongly cut by a class H of subsets of A. We say that H strongly cuts $(a_{\lambda})_{\lambda < \alpha}$ if for every $v < \alpha$ there is an $X_v \in H$ such that $a_{\lambda} \in X_v$ for $\lambda < v$ and $a_{\lambda} \notin X_v$ for $\alpha > \lambda \ge v$. The same example as before shows that already for $\alpha = \omega + 2$ the answer is negative if A is of power \aleph_0 . We do not know what is the situation if the power of A is greater than \aleph_0 , or if $\alpha = \omega + 1$.

PROBLEM 2. Let $|A| = \aleph_1$, $|G| > \aleph_1$. Is there always a sequence $a \in A^{\omega+2}$ which is strongly cut by G or A(-)G? In this case perhaps the answer is positive even with ω_1 instead of $\omega + 2$.

PROBLEM 3. Let $|A| = \aleph_0$, $|G| > \aleph_0$. Does there exist a sequence $a \in A^{\omega}$ such that one of the following holds: (i) *a* is strongly cut by *G* and there is an $X \in G$ which contains all the elements of *a*; or (ii) *a* is strongly cut by A(-)G.

Problem 3 arises essentially from the case $\alpha = \omega + 1$ by weakening one of the alternatives.

A. MATÉ proved that a presque-disjoint system cannot be a counter-example for $\alpha = \omega + 1$. To show this suppose that $|A| = \bigotimes_0$ and G is a large presque-disjoint system of infinite subsets of A, not equal to A. Then first there is an X in G such that every finite subset of X is contained in a set of G different from X. (In the contrary case we could associate a finite subset of X with every X in G in such a way that with different sets in G different finite sets are associated, this means that G is countable.) Starting from such an $X = X_{\omega}$ we choose an arbitrary X_0 in G. Then there is an a_0 in $X - X_0$ (since $X \cap X_0$ is finite) and an $X_1 \in G$ such that $a_0 \in X_1$. Then choosing an a_1 satisfying $a_1 \in X - X_0 - X_1$ we have an $X_2 \in G$ with $a_0, a_1 \in X_2$. Continuing in this manner we obtain a sequence $(a_n)_{n < \omega}$ and we can add an arbitrary element a_{ω} in \overline{X}_{ω} . The resulting sequence $(a_n)_{n < \omega} + 1$ is obviously strongly cut by G.

(Received April 9, 1965.)