SOME REMARKS ON SET THEORY, X.

by

P. ERDŌS and M. MAKKAI ${ }^{1}$

Let A be a set, G a class of subsets of A and $a=\left(a_{n}\right)_{n<\omega} \in A^{\omega}$ a sequence of elements of A. We say that G strongly cuts a if for every $n<\omega$ there exists an $X_{n} \in G$ such that $a_{i} \in X_{n}$ for $i<n$ and $a_{i} \oplus X_{n}$ for $\omega>i \geqq n$. The complement $A(-) G$ of G is the system of all sets $A-X$ such that $X \in G$.

Now we are going to prove the following theorem.
Theorem. If A is an infinite set, G is a class of subsets of A such that $|G|>|A|$, then there exists an infinite sequence in A^{ω} which is strongly cut by G or by $A(-) G$.

Proof. Assume the conditions of the theorem. For a subset B of A and a class H of subsets of A we denote by $B(\cap) H$ the class of all sets $B \cap X$ with $X \in H$. We write \bar{X} instead of $A-X$ (with the specified A). If $a_{0}, \ldots, a_{n-1} \in A$ then $G_{a_{0}, \ldots, a_{n-1}}$ will denote the class of sets in G containing all of a_{0}, \ldots, a_{n-1}.

We distinguish two cases (i) and (ii).
(i) First we suppose
(1) For any $B \subset A$ and $H \subset G$ such that $|B(\cap) H|>m=|A|$ there is an X in H for which $|(B \cap \bar{X})(\cap) H|>m$.
In this case we prove that G strongly cuts a certain sequence in A^{ω}.
We define by induction a sequence a_{0}, a_{1}, \ldots of elements of A and a sequence X_{0}, X_{1}, \ldots of sets in G such that, for every $k<\omega$, the following two conditions hold:

$$
\begin{equation*}
a_{0}, \ldots, a_{k-1} \in X_{k} ; a_{k}, a_{k+1}, \ldots \notin X_{k} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(\bar{X}_{0} \cap \bar{X}_{1} \cap \ldots \cap \bar{X}_{k-1}\right)(\cap) G_{e_{0} \ldots \ldots, a_{k-1}}\right|>m \tag{3}
\end{equation*}
$$

By (1) and the conditions of the theorem there is an X_{0} in G with $\left|\bar{X}_{0}(\cap) G\right|>m$. Hence there is an element a_{0} in \bar{X}_{0} such that $\left|\bar{X}_{0}(\cap) G_{a 0}\right|>m$. (In the contrary case we would have that $\bar{X}_{0}(\cap) G \subseteq \bigcup_{a \in \bar{X}_{0}}\left(\bar{X}_{0}(\cap) G_{a}\right) \cup\{0\}$ is of power at most $m \cdot m+1=m)$.

Now assume in general that $n \geqq 1$ and we have defined $a_{0}, \ldots, a_{n-1} ; X_{0}, \ldots, X_{n-1}$ such that

$$
\begin{equation*}
a_{0}, \ldots, a_{k-1} \in X_{k} ; a_{k}, a_{k+1}, \ldots, a_{n-1} \notin X_{k} \tag{4}
\end{equation*}
$$

for $k<n$ and (3) holds for $k=n$. Then applying (1) with $G_{a_{0} \ldots . . a_{n-1}}$ in place of H

[^0]we obtain a set X_{n} such that
\[

$$
\begin{equation*}
X_{n} \in G_{a_{0}, \ldots, a_{n-1}} \tag{5}
\end{equation*}
$$

\]

and

$$
\left|\left(\bar{X}_{0} \cap \ldots \cap \bar{X}_{n-1} \cap \bar{X}_{n}\right)(\cap) G_{a_{0}, \ldots, a_{n-1}}\right|>m
$$

Thus we have an element a_{n} such that

$$
\begin{equation*}
a_{n} \in \bar{X}_{0} \cap \ldots \cap \bar{X}_{n-1} \cap \bar{X}_{n} \tag{6}
\end{equation*}
$$

and the class of the sets in $\left(\bar{X}_{0} \cap \ldots \cap \bar{X}_{n-1} \cap \bar{X}_{n}\right)(\cap) G_{a_{0}, \ldots, a_{n-1}}$ containing a_{n}, is of power $>m$, i. e.

$$
\begin{equation*}
\left|\left(\bar{X}_{0} \cap \ldots \cap \bar{X}_{n}\right)(\cap) G_{a_{0}, \ldots, a_{n-1}, a_{n}}\right|>m \tag{7}
\end{equation*}
$$

Considering (4), (5) and (6) we see that

$$
\begin{equation*}
a_{0}, \ldots, a_{k-1} \in X_{k} ; a_{k}, a_{k+1}, \ldots, a_{n-1}, a_{n} \ddagger X_{k} \tag{8}
\end{equation*}
$$

for $k \leqq n$. (8) and (7) show that we have just the conditions for $n+1$ which were assumed for n. Thus by induction (and the axiom of choice) we have proved the existence of $\left(a_{n}\right)_{n<\omega}$ and $\left(X_{n}\right)_{n<\omega}$ with the required properties. In particular by (2) we see that G strongly cuts $\left(a_{n}\right)_{n<\omega}$.
(ii) Now we suppose that (1) does not hold, i. e. there is a subclass H of G and a subset B of A such that $|B(\cap) H|>m$ and for every $X \in H$ we have $|(B \cap \bar{X})(\cap) H| \leqq m$. In this case we prove that $A(-) G$ strongly cuts a certain sequence $\left(a_{n}\right)_{n<\omega} \in A^{\omega}$. First we show that we may assume $B=A$ and $H=G$, in other words that

$$
\begin{equation*}
|\bar{X}(\cap) G| \leqq m \quad \text { for every } \quad X \in G . \tag{9}
\end{equation*}
$$

Suppose that we have proved that the hypotheses of the theorem and (9) imply that $A(-) G$ strongly cuts a sequence in A^{ω}. Applying the suppositions of case (ii), we see that the conditions of the theorem and (9) hold for B and $B(\cap) H$ instead of A and G, respectively. Thus we have a $\left(b_{n}\right)_{n<\omega} \in B^{\omega}$ which is strongly cut by $B(-)(B(\cap) H)$, hence, a fortiori, $\left(b_{n}\right)_{n<\omega} \in A^{\omega}$ is a strongly cut by $A(-) G$.

Assuming (9), we shall show that (1) holds for $A(-) G$ instead of G, which implies by case (i) that $A(-) G$ strongly cuts a sequence in A^{ω}; this will complete the proof of our theorem. Indeed, suppose $B \subset A, H \subset G$ and $|B(\cap)(A(-) H)|>m$. This is equivalent to say that $|B(\cap) H|>m$. Then taking an arbitrary set X in H we have $|\bar{X}(\cap) H| \leqq m$ and a fortiori $|(B \cap \bar{X})(\cap) H| \leqq m$. But this implies $|(B \cap X)(\cap) H|>m$, because assuming $|(B \cap X)(\cap) H| \leqq m$ we would obtain $B(\cap) H \mid \leqq m$. Indeed, every set in $B(\cap) H$ is the union of one in $(B \cap \bar{X})(\cap) H$ and one in $(B \cap X)(\cap) H$ and so we could have in $B(\cap) H$ at most $m \cdot m=m$ sets. Thus we really have $|(B \cap X)(\cap) H|>m$ which means that an arbitrary $\bar{X} \in A(-) H$ is suitable for the X of case (i), hence our proof is complete.

Now we state some unsolved problems.
A large "presque-disjoint" system G of subsets of a set A of power $\aleph_{0}{ }^{1}$ shows that the first alternative of the theorem is not always true.
${ }^{\text {I }}$ i. e. $|G|>$ No a $^{\circ}$ and the intersection of any two sets in G is finite.

However the analogous question in the case of a set of power \aleph_{1} remains open.
Problem 1. Let $|A|=\aleph_{1},|G|>\aleph_{1}$. (G is as above). Does G cut always strongly a sequence in A^{ω} ?

If α is any ordinal, we may ask a similar question concerning the existence of $a \in A^{\alpha}$ strongly cut by a class H of subsets of A. We say that H strongly cuts $\left(a_{\lambda}\right)_{\lambda<\alpha}$ if for every $v<\alpha$ there is an $X_{v} \in H$ such that $a_{\lambda} \in X_{v}$ for $\lambda<v$ and $a_{\lambda} \notin X_{v}$ for $\alpha>\lambda \geqq \nu$. The same example as before shows that already for $\alpha=\omega+2$ the answer is negative if A is of power \aleph_{0}. We do not know what is the situation if the power of A is greater than \aleph_{0}, or if $\alpha=\omega+1$.

Problem 2. Let $|A|=\aleph_{1},|G|>\aleph_{1}$. Is there always a sequence $a \in A^{\omega+2}$ which is strongly cut by G or $A(-) G$? In this case perhaps the answer is positive even with ω_{1} instead of $\omega+2$.

Problem 3. Let $|A|=\aleph_{0},|G|>\aleph_{0}$. Does there exist a sequence $a \in A^{\omega}$ such that one of the following holds: (i) a is strongly cut by G and there is an $X \in G$ which contains all the elements of a; or (ii) a is strongly cut by $A(-) G$.

Problem 3 arises essentially from the case $\alpha=\omega+1$ by weakening one of the alternatives.
A. Máté proved that a presque-disjoint system cannot be a counter-example for $\alpha=\omega+1$. To show this suppose that $|A|=\aleph_{0}$ and G is a large presque-disjoint system of infinite subsets of A, not equal to A. Then first there is an X in G such that every finite subset of X is contained in a set of G different from X. (In the contrary case we could associate a finite subset of X with every X in G in such a way that with different sets in G different finite sets are associated, this means that G is countable.) Starting from such an $X=X_{\omega}$ we choose an arbitrary X_{0} in G. Then there is an a_{0} in $X-X_{0}$ (since $X \cap X_{0}$ is finite) and an $X_{1} \in G$ such that $a_{0} \in X_{1}$. Then choosing an a_{1} satisfying $a_{1} \in X-X_{0}-X_{1}$ we have an $X_{2} \in G$ with $a_{0}, a_{1} \in X_{2}$. Continuing in this manner we obtain a sequence $\left(a_{n}\right)_{n<\omega}$ and we can add an arbitrary element a_{ω} in \bar{X}_{ω}. The resulting sequence $\left(a_{v}\right)_{v<\omega+1}$ is obviously strongly cut by G.

[^0]: ${ }^{1}$ Mathematical Institute of the Hungarian Academy of Sciences.

